70 resultados para 110106 Medical Biochemistry - Proteins and Peptides (incl. Medical Proteomics)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthrax outbreaks in the United States and Europe and its potential use as a bioweapon have made Bacillus anthracis an interest of study. Anthrax infections are caused by the entry of B. anthracis spores into the host via the respiratory system, the gastrointestinal tract, cuts or wounds in the skin, and injection. Among these four forms, inhalational anthrax has the highest lethality rate and persistence of spores in the lungs of animals following pulmonary exposure has been noted for decades. However, details or mechanisms of spore persistence were not known. In this study, we investigated spore persistence in a mouse model. The results suggest that B. anthracis spores have special properties that promote persistence in the lung, and that there may be multiple mechanisms contributing to spore persistence. Moreover, recent discoveries from our laboratory suggest that spores evolved a sophisticated mechanism to interact with the host complement system. The complement system is a crucial part of the host defense mechanism against foreign microorganisms. Knowledge of the specific interactions that occur between the complement system and B. anthracis was limited. Studies performed in our laboratory have suggested that spores of B. anthracis can target specific proteins, such as Factor H (fH) of the complement system. Spores of B. anthracis are enclosed by an exosporium, which consists of a basal layer surrounded by a nap of hair-like filaments. The major structural component of the filaments is called Bacillus collagen-like protein of anthracis (BclA), which comprises a central collagen-like region and a globular C-terminal domain. BclA is the first point of contact with the innate system of an infected host. In this study, we investigated the molecular details of BclA-fH interaction with respect to the specific binding mechanism and the functional significance of this interaction in a murine model of anthrax infection. We hypothesized that the recruitment of fH to the spore surface by BclA limits the extent of complement activation and promotes pathogen survival and persistence in the infected host. Findings from this study are significant to understanding how to treat post-exposure prophylaxis and improve our knowledge of spores with the host immune system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The VirB/D4 type IV secretion system (T4SS) of Agrobacterium tumefaciens functions to transfer substrates to infected plant cells through assembly of a translocation channel and a surface structure termed a T-pilus. This thesis is focused on identifying contributions of VirB10 to substrate transfer and T-pilus formation through a mutational analysis. VirB10 is a bitopic protein with several domains, including a: (i) cytoplasmic N-terminus, (ii) single transmembrane (TM) α-helix, (iii) proline-rich region (PRR), and (iv) large C-terminal modified β-barrel. I introduced cysteine insertion and substitution mutations throughout the length of VirB10 in order to: (i) test a predicted transmembrane topology, (ii) identify residues/domains contributing to VirB10 stability, oligomerization, and function, and (iii) monitor structural changes accompanying energy activation or substrate translocation. These studies were aided by recent structural resolution of a periplasmic domain of a VirB10 homolog and a ‘core’ complex composed of homologs of VirB10 and two outer membrane associated subunits, VirB7 and VirB9. By use of the substituted cysteine accessibility method (SCAM), I confirmed the bitopic topology of VirB10. Through phenotypic studies of Ala-Cys insertion mutations, I identified “uncoupling” mutations in the TM and β-barrel domains that blocked T-pilus assembly but permitted substrate transfer. I showed that cysteine replacements in the C-terminal periplasmic domain yielded a variety of phenotypes in relation to protein accumulation, oligomerization, substrate transfer, and T-pilus formation. By SCAM, I also gained further evidence that VirB10 adopts different structural states during machine biogenesis. Finally, I showed that VirB10 supports substrate transfer even when its TM domain is extensively mutagenized or substituted with heterologous TM domains. By contrast, specific residues most probably involved in oligomerization of the TM domain are required for biogenesis of the T-pilus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell division or cytokinesis is one of the most fundamental processes in biology and is essential for the propagation of all living species. In Escherichia coli, cell division occurs by ingrowth of the membrane envelope at the cell center and is orchestrated by the FtsZ protein. FtsZ self-assembles into linear protofilaments in a GTP dependent manner to form a cytoskeletal scaffold called the Z-ring. The Z-ring provides the framework for the assembly of the division apparatus and determines the site of cytokinesis. The total amount of FtsZ molecules in a cell significantly exceeds the concentration required for Z-ring formation. Hence, Z-ring formation must be highly regulated, both temporally and spatially. In particular, the assembly of Z-rings at the cell poles and over chromosomal DNA must be prevented. These inhibitory roles are played by two key regulatory systems called the Min and nucleoid occlusion (NO) systems. In E. coli, Min proteins oscillate from pole to pole; the net result of this oscillatory process is the formation of a zone of FtsZ inhibition at the cell poles. However, the replicated nucleoid DNA near the midcell must also be protected from bisection by the Z-ring which is ensured by NO. A protein called SlmA was shown to be the effector of NO in E. coli. SlmA was identified in a screen designed to isolate mutations that were lethal in the absence of Min, hence the name SlmA (synthetic lethal with a defective Min system). Furthers SlmA was shown to bind DNA and localize to the nucleoid fraction of the cell. Additionally, light scattering experiments suggested that SlmA interacts with FtsZ-GTP and alters its polymerization properties. Here we describe studies that reveal the molecular mechanism by which SlmA mediates NO in E. coli. Specifically, we determined the crystal structure of SlmA, identified its DNA binding site specificity, and mapped its binding sites on the E. coli chromosome by chromatin immuno-precipitation experiments. We went on to determine the SlmA-FtsZ structure by small angle X-ray scattering and examined the effect of SlmA-DNA on FtsZ polymerization by electron microscopy. Our combined data show how SlmA is able to disrupt Z-ring formation through its interaction with FtsZ in a specific temporal and spatial manner and hence prevent nucleoid guillotining during cell division.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catenins have diverse and powerful roles in embryogenesis, homeostasis or disease progression, as best exemplified by the well-known beta-catenin. The less studied delta-catenin likewise contains a central Armadillo-domain. In common with other p120 sub-class members, it acts in a variety of intracellular compartments and modulates cadherin stability, small GTPase activities and gene transcription. In mammals, delta-catenin exhibits neural specific expression, with its knock-out in mice correspondingly producing cognitive defects and synaptic dysfunctions. My work instead employed the amphibian, Xenopus laevis, to explore delta-catenin’s physiological functions in a distinct vertebrate system. Initial isolation and characterization indicated delta-catenin’s expression in Xenopus. Unlike the pattern observed for mammals, delta-catenin was detected in most adult Xenopus tissues, although enriched in embryonic structures of neural fate as visualized using RNA in-situ hybridization. To determine delta-catenin’s requirement in amphibian development, I employed anti-sense morpholinos to knock-down gene products, finding that delta-catenin depletion results in developmental defects in gastrulation, neural crest migration and kidney tubulogenesis, phenotypes that were specific based upon rescue experiments. In biochemical and cellular assays, delta-catenin knock-down reduced cadherin levels and cell adhesion, and impaired activation of RhoA and Rac1, small GTPases that regulate actin dynamics and morphogenetic movements. Indeed, exogenous C-cadherin, or dominant-negative RhoA or dominant-active Rac1, significantly rescued delta-catenin depletion. Thus, my results indicate delta-catenin’s essential roles in Xenopus development, with contributing functional links to cadherins and Rho family small G proteins. In examining delta-catenin’s nuclear roles, I identified delta-catenin as an interacting partner and substrate of the caspase-3 protease, which plays critical roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with and sensitivity to caspase-3 was confirmed using assays involving its cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell lines. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 of delta-catenin, was identified through peptide sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each containing about half of the central Armadillo-domain. I found that cleavage of delta-catenin both abolishes its association with cadherins, and impairs its ability to modulate small GTPases. Interestingly, the carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear localization signal that I found is needed to facilitate delta-catenin’s nuclear targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating its interaction with an uncharacterized KRAB family zinc finger protein I named ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may associate with DNA as a transcriptional repressor. I further determined that other p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120 sub-family members, facilitating the coordinate modulation of cadherins, small GTPases and nuclear functions. Together, my work suggested delta-catenin’s essential roles in Xenopus development, and has revealed its novel contributions to cell junctions (via cadherins), cytoskeleton (via small G proteins), and nucleus (via ZIFCAT). Future questions include the larger role and gene targets of delta-catenin in nucleus, and identification of upstream signaling events controlling delta-catenin’s activities in development or disease progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wnt pathways contribute to many processes in cancer and developmental biology, with β-catenin being a key canonical component. P120-catenin, which is structurally similar to β-catenin, regulates the expression of certain Wnt target genes, relieving repression conferred by the POZ/ zinc-finger transcription factor Kaiso. In my first project, employing Xenopus embryos and mammalian cell lines, I found that the degradation machinery of the canonical Wnt pathway modulates p120-catenin protein stability, especially p120 isoform-1, through mechanisms shared with b-catenin. Exogenous expression of destruction-complex components such as GSK3b or Axin promotes p120-catenin degradation, and consequently, is able to rescue developmental phenotypes resulting from p120 over-expression during early Xenopus embryonic development. Conversely, as predicted, the in vivo depletion of either Axin or GSK3b coordinately increased p120 and b-catenin levels, while p120 levels decreased upon LRP5/6 depletion, which are positive modulators in the canonical Wnt pathway. At the primary sequence level, I resolved conserved GSK3b phosphorylation sites in p120’s (isoform 1) amino-terminal region. Point-mutagenesis of these residues inhibited the association of destruction complex proteins including those involved in ubiquitination, resulting in p120-catenin stabilization. Importantly, we found that two additional p120-catenin family members, ARVCF-catenin and d-catenin, in common with b-catenin and p120, associate with Axin, and are degraded in Axin’s presence. Thus, by similar means, it appears that canonical Wnt signals coordinately modulate multiple catenin proteins having roles in development and conceivably disease states. In my second project, I found that the Dyrk1A kinase exhibits a positive effect upon p120-catenin levels. That is, unlike the negative regulator GSK3b kinase, a candidate screen revealed that Dyrk1A kinase enhances p120-catenin protein levels via increased half-life. Dyrk1A is encoded by a gene located within the trisomy of chromosome 21, which contributes to mental retardation in Down Syndrome patients. I found that Dyrk1A expression results in increased p120 protein levels, and that Dyrk1A specifically associates with p120 as opposed to other p120-catenin family members or b-catenin. Consistently, Dyrk1A depletion in mammalian cell lines and Xenopus embryos decreased p120-catenin levels. I further confirmed that Dyrk overexpression and knock-down modulates both Siamois and Wnt11 gene expression in the expected manner based upon the resulting latered levels of p120-catenin. I determined that Dyrk expression rescues Kaiso depletion effects (gastrulation failure; increased endogenous Wnt11 expression), and vice versa. I then identified a putative Dyrk phosphorylation region within the N-terminus of p120-catenin, which may also be responsible for Dyrk1A association. I went on to make a phosphomimic mutant, which when over-expressed, had the predicted enhanced capacity to positively modulate endogenous Wnt11 and Siamois expression, and thereby generate gastrulation defects. Given that Dyrk1A modulates Siamois expression through stabilization of p120-catenin, I further observed that ectopic expression of Dyrk can positively influence b-catenin’s capacity to generate ectopic dorsal axes when ventrally expressed in early Xenopus embryos. Future work will investigate how Dyrk1A modulates the Wnt signaling pathway through p120-catenin, and possibly begin to address how dysfunction of Dyrk1A with respect to p120-catenin might relate to aspects of Down syndrome. In summary, the second phase of my graduate work appears to have revealed a novel aspect of Dyrk1A/p120-catenin action in embryonic development, with a functional linkage to canonical Wnt signaling. What I have identified as a “Dyrk1A/p120-catenin/Kaiso pathway” may conceivably assist in our larger understanding of the impact of Dyrk1A dosage imbalance in Down syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To establish the identity of a prominent protein, approximately 70 kDa, that is markedly increased in the retina of monkeys with experimental glaucoma compared with the fellow control retina, the relationship to glaucoma severity, and its localization in the retina. METHODS: Retinal extracts were subjected to 2-D gel electrophoresis to identify differentially expressed proteins. Purified peptides from the abundant 70 kDa protein were analyzed and identified by liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) separation, and collision-induced dissociation sequencing. Protein identity was performed on MASCOT (Matrix Science, Boston, MA) and confirmed by Western blot. The relationship between the increase in this protein and glaucoma severity was investigated by regression analyses. Protein localization in retina was evaluated by immunohistochemistry with confocal imaging. RESULTS: The abundant protein was identified as Macaca mulatta serum albumin precursor (67 kDa) from eight non-overlapping proteolytic fragments, and the identity was confirmed by Western blot. The average increase in retinal albumin content was 2.3 fold (P = 0.015). In glaucoma eyes, albumin was localized to some neurons of the inner nuclear layer, in the inner plexiform layer, and along the vitreal surface, but it was only found in blood vessels in control retinas. CONCLUSIONS: Albumin is the abundant protein found in the glaucomatous monkey retinas. The increased albumin is primarily localized to the inner retina where oxidative damage associated with experimental glaucoma is known to be prominent. Since albumin is a major antioxidant, the increase of albumin in the retinas of eyes with experimental glaucoma may serve to protect the retina against oxidative damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein Misfolding Disorders (PMDs) are a group of diseases characterized by the accumulation of abnormally folded proteins. Despite the wide range of proteins and tissues involved, PMDs share similar molecular and pathogenic mechanisms. Several epidemiological, clinical and experimental reports have described the co-existence of PMDs, suggesting a possible cross-talk between them. A better knowledge of the molecular basis of PMDs could have important implications for understanding the mechanism by which these diseases appear and progress and ultimately to develop novel strategies for treatment. Due to their similar molecular mechanisms, common therapeutic strategies could be applied for the diseases in this group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive malignancies with less than 5% of five year survival rate. New molecular markers and new therapeutic targets are urgently needed for patients with PDA. Oncogenic receptor tyrosine kinase Axl has been reported to be overexpressed in many types of human malignancies, including diffuse glioma, melanoma, osteosarcoma, and carcinomas of lung, colon, prostate, breast, ovary, esophagus, stomach, and kidney. However, the expression and functions of Axl in PDA are unclear. We hypothesized that Axl contributes to the development and progression of PDA. We examined Axl expression in 54 human PDA samples and their paired benign pancreatic tissue by immunohistochemistry, we found that Axl was overexpressed in 70% of stage II PDAs, but only 22% of benign ducts (P=0.0001). Axl overexpression was associated with higher frequencies of distant metastasis and was an independent prognostic factor for both poor overall and recurrence-free survivals in patients with stage II PDA (p = 0.03 and 0.04). Axl silencing by shRNA in pancreatic cancer cell lines, panc-28 and Panc-1, decreased tumor cell migration and invasion and sensitized PDA cells to apoptosis stimuli such as γ-irradiation and serum starvation. In addition, we found that Axl-mediated Akt and NF-κB activation and up regulation of MMP2 were involved in the invasion, migration and survival of PDA cells. Thus, we demonstrate that Axl plays an important role in the development and progression of PDA. Targeting Axl signaling pathway may represent a new approach for the treatment of PDA. To understand the molecular mechanisms of Axl overexpression in PDA, we found that Axl expression was down-regulated by hematopoietic progenitor kinase 1 (HPK1), a newly identified tumor suppressor in PDA. HPK1 is lost in over 95% of PDAs. Restoration of HPK1 in PDA cells down-regulated Axl expression. HPK1-mediated Axl degradation was inhibited by leupeptin, baflomycin A1, and monensin, suggesting that HPK1-mediated Axl degradation was through endocytosis-lysosome pathway. HPK1 interacted with and phosphorylated dynamin, a critical component of endocytosis pathway. Overexpression of dominant negative form of dynamin blocked the HPK1-mediated Axl degradation. Therefore we concluded that HPK1-mediated Axl degradation was through endocytosis-lysosome pathway and loss of HPK1 expression may contribute to Axl overexpression in PDAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analyses of rat T1 kininogen gene/chloramphenicol acetyltransferase (T1K/CAT) constructs revealed two regions important for tissue-specific and induced regulation of T1 kininogen.^ Although the T1 kininogen gene is inducible by inflammatory cytokines, a highly homologous K kininogen gene is minimally responsive. Moreover, the basal expression of a KK/CAT construct was 5- to 7-fold higher than that of the analogous T1K/CAT construct. To examine the molecular basis of this differential regulation, a series of promoter swapping experiments was carried out. Our transfection results showed that at least two regions in the K kininogen gene are important for its high basal expression: a distal 19-bp region (C box) constituted a binding site for CCAAT/enhancer binding protein (C/EBP) family proteins and a proximal 66-bp region contained two adjacent binding sites for hepatocyte nuclear factor-3 (HNF-3). The distal HNF-3 binding site from the K kininogen promoter demonstrated a stronger affinity than that from the T1 kininogen promoter. Since C/EBP and HNF-3 are highly enriched in the liver and known to enhance transcription of liver-specific genes, differential binding affinities of these factors accounted for the higher basal expression of the K kininogen gene.^ In contrast to the K kininogen C box, the T1 kininogen C box does not bind C/EBP presumably due to their two-nucleotide divergence. This sequence divergence, however, converts it to a consensus binding sequence for two IL-6-inducible transcription factors--IL-6 response element binding protein and acute-phase response factor. To functionally determine whether C box sequences are important for their differential acute-phase response, T1 and K kininogen C boxes were swapped and analyzed after transfection into Hep3B cells. Our results showed that the T1 kininogen C box is indeed one of the IL-6 response elements in T1 kininogen promoter. Furthermore, its function can be modulated by a 5$\sp\prime$-adjacent C/EBP-binding site (B box) whose mutation significantly reduced the overall induced activity. Moreover, this B box is the target site for binding and transactivation of another IL-6 inducible transcription factor C/EBP$\delta.$ Evolutionary divergence of a few critical nucleotides can either lead to subtle changes in the binding affinities of a given transcription factor or convert a binding sequence for a constitutive factor to a site recognized by an inducible factor. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostaglandin H synthase (PGHS) is a key enzyme in biosynthesis of prostaglandins, thromboxane, and prostacyclin. It has two activities, cyclooxygenase and peroxidase. "PGHS" means PGHS-1. A current hypothesis considers the cyclooxygenase reaction to be a free radical chain reaction, initiated by interaction of the synthase peroxidase with hydroperoxides leading to the production of a tyrosyl free radical. According to this hypothesis, tyrosyl residue(s) may play a key role in the cyclooxygenase reaction. Tetranitromethane (TNM) can relatively selectively nitrate tyrosines at pH 8.0. The effect of TNM on both cyclooxygenase activity and peroxidase activity has been examined: reaction of the synthase holoenzyme with TNM at pH 8.0 led to inactivation of both activities, with the cyclooxygenase activity being lost rapidly and completely, while the peroxidase activity was lost more slowly. Indomethacin, a non-steroidal anti-inflammatory agent, can protect the synthase from the inactivation of TNM. Amino acid analyses indicated that a loss of tyrosine and formation of nitrotyrosine residues occurred during reaction with TNM, and that TNM-reacted holoenzyme with $<$10% residual cyclooxygenase activity had about 2.0 nitrotyrosine/subunit.^ PGH synthase is known to be an endoplasmic reticulum membrane-associated protein. Antibodies directed at particular PGHS peptide segments and indirect immunofluorescence have been used to characterize the membrane topology of crucial portions of PGHS. PGHS was expressed in COS-1 cells transfected with the appropriate cDNA. Stably-transfected human endothelial cells were also used for the topology study. The cells were treated with streptolysin-O, which selectively permeabilizes the plasma membrane, or with saponin to achieve general membrane disruption, before incubation with the antipeptide antibodies. Bound antipeptide antibody was stained by FITC-labelled secondary antibody and visualized by fluorescence microscopy. With the antipeptide antibodies against residues 51-66, 156-170 or 377-390, there was a significant reticular and perinuclear pattern of staining in cells permeabilized with saponin but not in cells permeabilized with SLO alone. Antibodies directed against the endogenous C-terminal peptide or against residues 271-284 produced staining in cells permeabilized with saponin, and also in a lower, but significant fraction of cells permeabilized with SLO. Similar results were obtained when COS-1 cells expressing recombinant PGHS with a viral reporter peptide inserted at the C-terminus were stained with antibody against the reporter epitope.^ The PGHS C-terminal sequence is similar to that of the consensus KDEL ER retention signal. The potential function of the PGHS C-terminus segment in ER retention was examined by mutating this segment and analyzing the subcellular distribution of the mutants expressed in COS-1 cells. None of the mutants had an altered subcellular distribution, although some had greatly diminished the enzyme activities. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The myocyte enhancer factor (MEF)-2 family of transcription factors has been implicated in the regulation of muscle transcription in vertebrates, but the precise position of these regulators within the genetic hierarchy leading to myogenesis is unclear. The MEF2 proteins bind to a conserved A/T-rich DNA sequence present in numerous muscle-specific genes, and they are expressed in the cells of the developing somites and in the embryonic heart at the onset of muscle formation in mammals. The MEF2 genes belong to the MADS box family of transcription factors, which control specific programs of gene expression in species ranging from yeast to humans. Each MEF2 family member contains two highly conserved protein motifs, the MADS domain and the MEF2-specific domain, which together provide the MEF2 factors with their unique DNA binding and dimerization properties. In an effort to further define the function of the MEF2 proteins, and to evaluate the degree of conservation shared among these factors and the phylogenetic pathways that they regulate, we sought to identify MEF2 family members in other species. In Drosophila, a homolog of the vertebrate MEF2 genes was identified and termed D-mef2. The D-MEF2 protein binds to the consensus MEF2 element and can activate transcription through tandem copies of that site. During Drosophila embryogenesis, D-MEF2 is specific to the mesoderm germ layer of the developing embryo and becomes expressed in all muscle cell types within the embryo. The role of D-mef2 in Drosophila embryogenesis was examined by generating a loss-of-function mutation in the D-mef2 gene. In embryos homozygous for this mutant allele, somatic, cardiac, and visceral muscles fail to differentiate, but precursors of these myogenic lineages are normally specified and positioned. These results demonstrate that different muscle cell types share a common myogenic differentiation program controlled by MEF2 and suggest that this program has been conserved from Drosophila to mammals. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein kinase C (PKC) is a family of serine-threonine kinases that are activated by a wide variety of hormones, neurotransmitters and growth factors. A single cell type contains multiple isoforms that are translocated to distinct and different subcellular sites upon mitogenic stimulus. Many different cellular responses are attributed to PKC activity though relatively few substrates or binding proteins have been definitively characterized. We used the hinge and catalytic domain of PKC$\alpha$ (PKC7) in a yeast two-hybrid screen to clone proteins that interact with C-kinase (PICKs). One protein which we have termed PICK1 may be involved in PKC$\alpha$-specific function at the level of the nuclear membrane after activation. Binding of PICK1 to PKC$\alpha$ has been shown to be isoform specific as it does not bind to PKC$\beta$II or PKC$\alpha$ in the yeast two-hybrid system. PICK1 mRNA expression level is highest in testis and brain with lower levels of expression in skeletal muscle, heart, kidney, lung and liver. PICK1 protein contains five PKC consensus phosphorylation sites and serves as an in vitro substrate for PKC. The PICK1 protein also contains a P-Loop motif that has been shown to bind ATP or GTP in the Ras family of oncoproteins as well as the G-Protein family. Proteins which bind ATP or GTP using this motif all have some sort of catalytic function although none has been identified for PICK1 as yet. PICK1 contains a DHR/GLGF motif at the N-terminus of the protein. The DHR/GLGF motif is contained in a number of recently described proteins and has been shown to mediate protein-protein interactions at the level of membranes and cytoskeleton. When both PKC$\alpha$ and PICK1 are co-expressed in Cos1 cells the two proteins co-localize to the perinucleus in immunoflouresence studies and co-immunoprecipitate. The binding site for PKC7 has been localized to amino acids 1-358 on PICK1 which contains the DHR/GLGF motif. Binding of PICK1 to PKC$\alpha$ requires the hinge and C-terminal domains of PKC$\alpha$. In vitro, PICK1 binds to PKC$\alpha$ and inhibits its activity as assayed by myelin basic protein phosphorylation. PICK1 also binds to TIS21, a primary response gene that is expressed in response to phorbol ester and growth factor treatment. The Caenorhabditis elegans homologue of PICK1 has been cloned and sequenced revealing a high degree of conservation in the DHR/GLGF motif. A more C-terminal region also shows a high degree of conservation, and the C. elegans PICK1 homologue binds to PKC7 suggesting a conservation of function. Taken together these results suggest that PICK1 may be involved in a PKC$\alpha$-specific function at the level of the nuclear membrane. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipids are the major component of cellular membranes. In addition to its structural role, phospholipids play an active and diverse role in cellular processes. The goal of this study is to identify the genes involved in phospholipid biosynthesis in a model eukaryotic system, Saccharomyces cerevisiae. We have focused on the biosynthetic steps localized in the inner mitochondrial membrane; hence, the identification of the genes encoding phosphatidylserine decarboxylase (PSD1), cardiolipin synthase (CLS1), and phosphatidylglycerophosphate synthase (PGS1).^ The PSD1 gene encoding a phosphatidylserine decarboxylase was cloned by complementation of a conditional lethal mutation in the homologous gene in Escherichia coli strain EH150. Overexpression of the PSD1 gene in wild type yeast resulted in 20-fold amplification of phosphatidylserine decarboxylase activity. Disruption of the PSD1 gene resulted in 20-fold reduction of decarboxylase activity, but the PSD1 null mutant exhibited essentially normal phenotype. These results suggest that yeast has a second phosphatidylserine decarboxylation activity.^ Cardiolipin is the major anionic phospholipid of the inner mitochondrial membrane. It is thought to be an essential component of many biochemical functions. In eukaryotic cells, cardiolipin synthase catalyzes the final step in the synthesis of cardiolipin from phosphatidylglycerol and CDP-diacylglycerol. We have cloned the gene CLS1. Overexpression of the CLS1 gene product resulted in significantly elevated cardiolipin synthase activity, and disruption of the CLS1 gene, confirmed by PCR and Southern blot analysis, resulted in a null mutant that was viable and showed no petite phenotype. However, phospholipid analysis showed undetectable cardiolipin level and an accumulation of phosphatidylglycerol. These results support the conclusion that CLS1 encodes the cardiolipin synthase of yeast and that normal levels of cardiolipin are not absolutely essential for survival of the cell.^ Phosphatidylglycerophosphate (PGP) synthase catalyzes the synthesis of PGP from CDP-diacylglycerol and glycerol-3-phosphate and functions as the committal and rate limiting step in the biosynthesis of cardiolipin. We have identified the PGS1 gene as encoding the PGP synthase. Overexpression of the PGS1 gene product resulted in over 15-fold increase in in vitro PGP synthase activity. Disruption of the PGS1 gene in a haploid strain of yeast, confirmed by Southern blot analysis, resulted in a null mutant strain that was viable but had significantly altered phenotypes, i.e. inability to grow on glycerol and at $37\sp\circ$C. These cells showed over a 10-fold decrease in PGP synthase activity and a decrease in both phosphatidylglycerol and cardiolipin levels. These results support the conclusion that PGS1 encodes the PGP synthase of yeast and that neither phosphatidylglycerol nor cardiolipin are absolutely essential for survival of the cell. ^