511 resultados para Biology, Microbiology|Health Sciences, Pathology|Health Sciences, Immunology
Resumo:
Recent publications have questioned the origin of the MDA-MB-435 breast cancer cell line and have suggested that it is of melanocyte origin rather than breast epithelial origin. The data presented herein show unequivocally that MDA-MB-435 does express breast epithelial markers and produces milk-specific lipids. The data also indicated that MDA-MB-435 does express some melanocyte proteins but this expression occurs in the same MDA-MB-435 cells that express breast epithelial proteins. Although MDA-MB-435 does not strictly adhere to a breast lineage, it does retain breast specific markers and is thus valid as an experimental cell line in breast cancer studies. ^ Heregulinβ1 (HRGβ1) has been shown to both stimulate and inhibit breast tumorigenic and metasastasic phenotypes. Some studies used only the EGF-like domain of the extracellular domain of HRGβ1 while others used bacterially-expressed HRGβ1. Our in vitro data demonstrated that the full-length extracellular domain of human HRGβ1 reduced clonal growth of MDA-MB-435 breast cancer cells but stimulated apoptosis in MDA-MB-435 and MCF-7 breast cancer cells. In addition, mammalian-expressed HRGβ1 did not dramatically affect matrix metalloproteinase-9 activity but did inhibit cell motility of MDA-MB-435 and MCF-7 cells. Taken together, the in vitro data indicated that HRGβ1 inhibits metastasis-associated properties. ^ The in vivo data demonstrated that inducible expression of the full-length extracellular domain of human HRGβ1 in MDA-MB-435 cells reduced tumor volume and cell proliferation but increased apoptosis of cells injected at the mammary fat pad in nude mice. More importantly, HRGβ1 reduced the number of metastases observed by a spontaneous metastasis assay. Taken together, these data indicate that the full-length extracellular domain of human HRGβ1 has the net effect of inhibiting breast cancer metastasis. ^
Resumo:
The current study investigated data quality and estimated cancer incidence and mortality rates using data provided by Pavlodar, Semipalatinsk and Ust-Kamenogorsk Regional Cancer Registries of Kazakhstan during the period of 1996–1998. Assessment of data quality was performed using standard quality indicators including internal database checks, proportion of cases verified from death certificates only, mortality:incidence ratio, data patterns, proportion of cases with unknown primary site, proportion of cases with unknown age. Crude and age-adjusted incidence and mortality rates and 95% confidence intervals were calculated, by gender, for all cancers combined and for 28 specific cancer sites for each year of the study period. The five most frequent cancers were identified and described for every population. The results of the study provide the first simultaneous assessment of data quality and standardized incidence and mortality rates for Kazakh cancer registries. ^
Resumo:
The adenovirus type 5 E1A gene was originally developed as a gene therapy to inhibit tumorigenicity of HER-2-overexpressing cells by transcriptional downregulation of HER-2. Our goal is to improve the overall efficacy of E1A gene therapy. To achieve this goal, we have conducted two preclinical experiments. ^ First, we hypothesized that Bcl-2 overexpressing ovarian cancer is resistant to E1A gene therapy. This hypothesis is based on that the 19 kDa protein product of the adenoviral E1B gene which is homologous to Bcl-2 inhibits E1A-induced apoptosis. Treating high Bcl-2-xpressing cells with E1A in combination with an antisense oligonucleotide to Bcl-2 (Bcl-2-ASO) resulted in a significant decrease in cell viability due to an increased rate of apoptosis relative to cells treated with E1A alone. In an ovarian cancer xenograft model, mice implanted with low HER-2, high Bcl-2 cells, treated with E1A plus Bcl-2-ASO led to prolonged survival. Bcl-2 thus may serve as a predictive molecular marker enabling us to select patients with ovarian cancer who will benefit significantly from E1A gene therapy. ^ Second, we elucidated the molecular mechanism governing the anti-tumor effect of E1A in ovarian cancer to identify a more potent tumor suppressor gene. We identified PEA-15 (phospho-protein enriched in astrocytes) upregulated in E1A transfected low HER-2-expressing OVCAR-3 ovarian cancer cell, which showed decreased cell proliferation. PEA-15 moved ERK from the nucleus to the cytoplasm and inhibited ERK-dependent transcription and proliferation. Using small interfering RNA to knock down PEA-15 expression in OVCAR-3 cells made to constitutively express E1A resulted in accumulation of phosphoERK in the nucleus, an increase in Elk-1 activity, DNA synthesis, and anchorage-independent growth. PEA-15 also independently suppressed colony formation in some breast and ovarian cancer cell lines in which E1A is known to have anti-tumor activity. We conclude that the anti-tumor activity of E1A depends on PEA-15. ^ In summary, (1) Bcl-2 may serve as a predictive molecular marker of E1A gene therapy, allowing us to select patients and improve efficacy of E1A gene therapy. (2) PEA-15 was identified as a component of the molecular mechanism governing the anti-tumor activity of E1A in ovarian cancer, (3) PEA-15 may be developed as a novel therapeutic gene. ^
Resumo:
Retinoid therapy has been successful for the treatment of skin squamous cell carcinoma (SCC). A suppression of the predominant retinoid X receptor expressed in skin, retinoid X receptor α (RXRα), has been reported in skin SCC. These observations have led to the hypothesis that retinoid receptor loss contributes to the tumorigenic phenotype of epithelial cancers. To test this hypothesis, the RXRα gene was mapped in order to generate a targeting construct. Additionally the transcriptional regulation of the human RXRα a gene in keratinocytes was characterized after identifying the transcription initiation sites, the promoter, and enhancer regions of this gene. The structure is highly conserved between human and mouse. A nontumorigenic human skin-derived cell line called near diploid immortalized keratinocytes (NIKS) has the advantage of growing as organotypic raft cultures, under physiological conditions closely resembling in-vivo squamous stratification. We have exploited the raft culture technique to develop an in-vitro model for skin SCC progression that includes the NIKS cells, HaCaT cells, a premalignant cell line, and SRB 12-p9 cells, a tumorigenic SCC skin cell line. The differentiation, proliferation and nuclear receptor ligand response characteristics of this system were studied and significant and novel results were obtained. RXRs are obligate heterodimerization partners with many of the nuclear hormone receptors, including retinoic acid receptors (RARs), vitamin D3 receptors (VDR), thyroid hormone receptors (T3 R) and peroxisome proliferator activate receptors (PPARs), which are all known to be active in skin. Treatment of the three cell lines in raft culture with the RXR specific ligand BMS649, BMS961 (RARγ-specific), vitamin D3 (VDR ligand), thryoid hormone (T3R ligand) and clofibrate (PPARa ligand), and the combination of BMS649 with each of the 4 receptor partner ligands, resulted in distinct effects on differentiation, proliferation and apoptosis. The effects of activation of RXRs in each of the four-receptor pathways; in the context of skin SCC progression, with an emphasis on the VDR/RXR pathway, are discussed. These studies will lead to a better understanding of RXRα action in human skin and will help determine its role in SCC tumorigenesis, as well as its potential as a target for the prevention, treatment, and control of skin cancer. ^
Resumo:
Background. Diabetes places a significant burden on the health care system. Reduction in blood glucose levels (HbA1c) reduces the risk of complications; however, little is known about the impact of disease management programs on medical costs for patients with diabetes. In 2001, economic costs associated with diabetes totaled $100 billion, and indirect costs totaled $54 billion. ^ Objective. To compare outcomes of nurse case management by treatment algorithms with conventional primary care for glycemic control and cardiovascular risk factors in type 2 diabetic patients in a low-income Mexican American community-based setting, and to compare the cost effectiveness of the two programs. Patient compliance was also assessed. ^ Research design and methods. An observational group-comparison to evaluate a treatment intervention for type 2 diabetes management was implemented at three out-patient health facilities in San Antonio, Texas. All eligible type 2 diabetic patients attending the clinics during 1994–1996 became part of the study. Data were obtained from the study database, medical records, hospital accounting, and pharmacy cost lists, and entered into a computerized database. Three groups were compared: a Community Clinic Nurse Case Manager (CC-TA) following treatment algorithms, a University Clinic Nurse Case Manager (UC-TA) following treatment algorithms, and Primary Care Physicians (PCP) following conventional care practices at a Family Practice Clinic. The algorithms provided a disease management model specifically for hyperglycemia, dyslipidemia, hypertension, and microalbuminuria that progressively moved the patient toward ideal goals through adjustments in medication, self-monitoring of blood glucose, meal planning, and reinforcement of diet and exercise. Cost effectiveness of hemoglobin AI, final endpoints was compared. ^ Results. There were 358 patients analyzed: 106 patients in CC-TA, 170 patients in UC-TA, and 82 patients in PCP groups. Change in hemoglobin A1c (HbA1c) was the primary outcome measured. HbA1c results were presented at baseline, 6 and 12 months for CC-TA (10.4%, 7.1%, 7.3%), UC-TA (10.5%, 7.1%, 7.2%), and PCP (10.0%, 8.5%, 8.7%). Mean patient compliance was 81%. Levels of cost effectiveness were significantly different between clinics. ^ Conclusion. Nurse case management with treatment algorithms significantly improved glycemic control in patients with type 2 diabetes, and was more cost effective. ^
Resumo:
Though E2F1 is deregulated in most human cancers by mutations of the p16-cyclin D-Rb pathway, it also exhibits tumor suppressive activity. A transgenic mouse model overexpressing E2F1 under the control of the bovine keratin 5 (K5) promoter exhibits epidermal hyperplasia and spontaneously develops tumors in the skin and other epithelial tissues after one year of age. In a p53-deficient background, aberrant apoptosis in K5 E2F1 transgenic epidermis is reduced and tumorigenesis is accelerated. In sharp contrast, K5 E2F1 transgenic mice are resistant to papilloma formation in the DMBA/TPA two-stage carcinogenesis protocol. K5 E2F4 and K5 DP1 transgenic mice were also characterized and both display epidermal hyperplasia but do not develop spontaneous tumors even in cooperation with p53 deficiency. These transgenic mice do not have increased levels of apoptosis in their skin and are more susceptible to papilloma formation in the two-stage carcinogenesis model. These studies show that deregulated proliferation does not necessarily lead to tumor formation and that the ability to suppress skin carcinogenesis is unique to E2F1. E2F1 can also suppress skin carcinogenesis when okadaic acid is used as the tumor promoter and when a pre-initiated mouse model is used, demonstrating that E2F1's tumor suppressive activity is not specific for TPA and occurs at the promotion stage. E2F1 was thought to induce p53-dependent apoptosis through upregulation of p19ARF tumor suppressor, which inhibits mdm2-mediated p53 degradation. Consistent with in vitro studies, the overexpression of E2F1 in mouse skin results in the transcriptional activation of the p19ARF and the accumulation of p53. Inactivation of either p19ARF or p53 restores the sensitivity of K5 E2F1 transgenic mice to DMBA/TPA carcinogenesis, demonstrating that an intact p19ARF-p53 pathway is necessary for E2F1 to suppress carcinogenesis. Surprisingly, while p53 is required for E2F1 to induce apoptosis in mouse skin, p19ARF is not, and inactivation of p19ARF actually enhances E2F1-induced apoptosis and proliferation in transgenic epidermis. This indicates that ARF is important for E2F1-induced tumor suppression but not apoptosis. Senescence is another potential mechanism of tumor suppression that involves p53 and p19ARF. K5 E2F1 transgenic mice initiated with DMBA and treated with TPA show an increased number of senescence cells in their epidermis. These experiments demonstrate that E2F1's unique tumor suppressive activity in two-stage skin carcinogenesis can be genetically separated from E2F1-induced apoptosis and suggest that senescence utilizing the p19ARF-p53 pathway plays a role in tumor suppression by E2F1. ^
Resumo:
The Eker rat model has allowed researchers the unique opportunity to study the tumorigenesis of spontaneously occurring uterine leiomyoma. Animals in this line harbor a germline mutation in the tuberous sclerosis complex-2 (Tsc-2) tumor suppressor gene and develop uterine leiomyomas at a rate of ∼65%. Primary leiomyomas obtained from humans and Eker rats along with Eker-derived leiomyoma cell lines were used in studies described herein to determine the effect of PPARγ ligand treatment on the proliferation of this cell type and to determine the role of tuberin and p27Kip1 in the etiology of this tumor type. Treatment of leiomyoma cells of human and rat origin with PPARγ-activating compounds resulted in decreased proliferation. Additionally, PPARγ ligands inhibited estrogen-dependent gene transactivation in Eker-derived leiomyoma cells suggesting that nuclear receptor cross-talk may exist between PPAR and the ER and may be responsible for the inhibition of proliferation in this cell type. Loss of tuberin, the product of the TSC-2 gene, is associated with Eker rat leiomyoma development while the role of this tumor suppressor in human leiomyoma development is unknown. Data herein show that tuberin expression is diminished in 25% of human leiomyomas tested. Additionally, we observed diminished p27 Kip1 expression in 80% of human uterine leiomyomas compared to normal myometrium. Interestingly, the loss of tuberin expression in human leiomyoma was associated with cytoplasmic p27Kip1 accumulation in this cell type. Furthermore, tuberin-null Eker rat leiomyomas and derived cell lines had predominantly cytoplasmic p27Kip1 compared to tuberin-expressing normal myometrium. Taken together, our data show that human and Eker rat leiomyoma proliferation is inhibited upon PPARγ treatment and that the etiology of human and Eker rat leiomyoma converge at loss of p27Kip1 function. Furthermore, our data indicate that the loss of p27 Kip1 function is mediated by loss of expression (in 80% of human leiomyoma) or cytoplasmic localization potentially resulting from the loss of tuberin. ^
Resumo:
Pancreatic adenocarcinoma is the fourth leading cause of adult cancer death in the United States. At the time of diagnosis, most patients with pancreatic cancer have advanced and metastatic disease, which makes most of the traditional therapeutic strategies are ineffective for pancreatic cancer. A better understanding of the molecular basis of pancreatic cancer will provide the approach to identify the new strategies for early diagnosis and treatment. NF-κB is a family of transcription factor that play important roles in immune response, cell growth, apoptosis, and tumor development. We have shown that NF-κB is constitutively activated in most human pancreatic tumor tissues and cell lines, but not in the normal tissues and HPV E6E7 gene-immortalized human pancreatic ductal epithelial cells (HPDE/E6E7). By infecting the pancreatic cancer cell line Aspc-1 with a replication defective retrovirus expressing phosphorylation-defective IκBα (IκBαM), the constitutive NF-κB activation is blocked. Subsequent injection of this Aspc-1/IκBαM cells into the pancreas of athymic nude mice showed that liver metastasis is suppressed by the blockade of NF-κB activation. Current studies showed that an autocrine mechanism accounts for the constitutive activation of NF-κB in metastatic human pancreatic cancer cell lines, but not in nonmetastatic human pancreatic cancer cell lines. Further investigation showed that interleukin-1α (IL-1α) was the primary cytokine secreted by these cells that activates NF-κB. Inhibition of IL-1α activity suppressed the constitutive activation of NF-κB and the expression of its downstream target gene, uPA, in metastatic pancreatic cancer cell lines. Even though IL-1α is one of the previously identified NF-κB downstream target genes, our results demonstrate that regulation of IL-1α expression is independent of NF-κB and primarily dependent on AP-1 activity, which is in part induced by overexpression of EGF receptors and activation of MAP kinases. In conclusion, our findings suggest a possible mechanism by which NF-κB is constitutively activated in metastatic human pancreatic cancer cells and a possible missing mechanistic links between inflammation and cancer. ^
Resumo:
Breast cancer is the most common cancer among women with approximately 180,000 new cases being diagnosed yearly in the United States (1). HER2/neu gene amplification and subsequent protein overexpression is found in 20–30% of breast cancer patients and can lead to the promotion of various metastasis-related properties (2–4) and/or resistance to cancer therapies such as chemotherapy and radiation (5). ^ The protein product of the HER2/neu gene, p185, is a proven target for immunological therapy. Recently, passive immunotherapy with the monoclonal antibody Trastuzumab® has validated an immunological approach to HER2/neu+ breast cancer. Immunity to HER2/ neu, when found in breast cancer patients, is of low magnitude. Vaccination-induced HER2/neu-specific antibodies and HER2/neu-specific cytotoxic T cells could result in long-lived immunity with therapeutic benefit. Many features of DNA vaccines and attenuated viral vectors may contribute to the efficacy of prime-boost vaccination. In particular, vaccines capable of eliciting strong cell-mediated immunity are thought to hold the greatest promise for control of cancer (6–9). ^ To optimize cellular immunization to HER2/neu in my study, the HER2/neu gene was presented to the immune system using a priming vector followed by a second vector used as the boost. In both animals and humans, priming with DNA and boosting with a poxviruses, vaccinia or canarypox appears to be particularly promising for induction of a broad immune responses (10). ^ I tested three gene vaccines encoding the HER2/neu gene: (1) a plasmid, SINCP, that contains part of the genome of Sindbis virus; (2) Viral Replicon Particles (VRP) of Venezuela Equine Encephalitis virus (VEE) and (3) E1/E2a-deleted human Type 5 Adenovirus. In SINCP and the VRP, the caspid and envelope genes of the virus were deleted and replaced with the gene for HER2/neu. SINCP-neu, VRP- neu and Adeno-neu when used alone were effective vaccines protecting healthy mice from challenge with a breast cancer cell line injected in the mammary fat pad or injected i.v. to induce experimental lung metastasis. However, SINCP-neu, VRP-neu or Adeno-neu when used alone were not able to prolong survival of mice in therapeutic models in which vaccination occurred after injection of a breast cancer cell line. ^ When the vaccines were combined in a mixed regimen of a SINCP- neu prime VRP-neu or Adeno-neu boost, there was a significant difference in tumor growth and survival in the therapeutic vaccine models. In vitro assays demonstrated that vaccination with each of the three vaccines induced IgG specific for p185, the gene product of HER2/neu, induced p185-specific T lymphocytes, as measured by tetramer analysis. Vaccination also induced intracellular INF-γ and a positive ELISPOT assay. These findings indicate that SINCP-neu, VRP-neu and Adeno-neu, used alone or in combination, may have clinical potential as adjuvant immunotherapy for the treatment of HER2/neu-expressing tumors. ^
Resumo:
Oligodendrogliomas are primary neoplasms of the central nervous system (CNS). One of the most common and characteristic chromosomal abnormalities observed in oligodendroglioma is allelic loss of 1p (Reifenberger et al., 1994; Bello et al., 1995). Since 1p loss has been reported for both well-differentiated and anaplastic oligodendroglioma, it is believed to occur early in tumor development (Bello et al., 1995). This allelic loss also has clinical significance, for oligodendroglioma patients with 1p loss generally respond significantly better to combination chemotherapy and have longer average survival than do oligodendroglioma patients without 1p loss (Cairncross et al., 1998). To date, no genes on 1p have been implicated as essential to the development or treatment response of oligodendroglioma. In order to localize and/or identify a gene involved in oligodendroglioma development, I tested 170 oligodendrogliomas for deletions of 1p and tested 26 tumors for differential expression of genes in the region of 1p36. Evidence obtained from these methods implicated two genes, SHREW1 and the gene encoding DNA fragmentation factor beta (DFFB). The function for the SHREW1 locus is currently not well known, but preliminary data suggests that it a novel member of adherens junctions. The DFFB gene is an enhancer for apoptosis. Thus, both SHREW1 and DFFB may be candidates for an oligodendroglioma tumor suppressor. Mutational analysis of both genes did not uncover any mutations. Future studies will evaluate other mechanisms that may be responsible for inactivation of these genes in oligodendrogliomas. ^
Resumo:
Coronary artery disease (CAD) is a multifactorial disease process involving behavioral, inflammatory, clinical, thrombotic, and genetic components. Previous epidemiologic studies focused on identifying behavioral and demographic risk factors of CAD, but none focused on platelets. Current platelet literature lacks the known effects of platelet function and platelet receptor polymorphisms on CAD. This case-control analysis addressed these issues by analyzing data collected for a previous study. Cases were individuals who had undergone CABG and thus had been diagnosed with CAD, while the controls were volunteers presumed to be CAD free. The platelet function variables analyzed included fibrinogen Von Willebrand Factor activity (VWF), shear-induced platelet aggregation (SIPA), sCD40L, and mean platelet volume; and the platelet polymorphisms studied included PIA, α2 807, Ko, Kozak, and VNTR. Univariate analysis found fibrinogen, VWF, SIPA, and PIA to be independent risk factors of CAD. Logistic regression was used to build a predictive model for CAD using the platelet function and platelet polymorphism data adjusted for age, sex, race, and current smoking status. A model containing only platelet polymorphisms and their respective receptor densities, found polymorphisms within GPIbα to be associated with CAD, yielding an 86% (95% C.I. 0.97–3.55) increased risk with the presence of at least 1 polymorphism in Ko, Kozak, or VNTR. Another model included both platelet function and platelet polymorphism data. Fibrinogen, the receptor density of GPIbα, and the polymorphism in GPIa-IIa (α2 807) were all associated with CAD with odds ratios of 1.10, 1.04, and 2.30 for fibrinogen (10mg/dl increase), GPIbα receptors (1 MFI increase), and GPIa-IIa, respectively. In addition, risk estimates and 99% confidence intervals adjusted for race were calculated to determine if the presence of a platelet receptor polymorphism was associated with CAD. The results were as follows: PIA (1.64, 0.74–3.65); α2 807 (1.35, 0.77–2.37); Ko (1.71, 0.70–4.16); Kozak (1.17, 0.54–2.52); and VNTR (1.24, 0.52–2.91). Although not statistically significant, all platelet polymorphisms were associated with an increased risk for CAD. These exploratory findings indicate that platelets do appear to have a role in atherosclerosis and that anti-platelet drugs targeting GPI-IIa and GPIbα may be better treatment candidates for individuals with CAD. ^
Resumo:
The importance of IGF-1/IGF-1R signaling is evident in human cancers including breast, colon, prostate, and lung which have been shown to overexpress IGF-1. Also, serum levels of IGF-1 have been identified as a risk factor for these cancers. IGF-1 has been primarily shown to mediate its mitogenic effects through signaling pathways such as MAPK and PI3K/Akt. In this regard, BK5.IGF-1 transgenic mice were generated and these mice displayed hyperplasia and hyperkeratosis in the epidermis. In addition, these mice were also found to have elevated MAPK, PI3K, and Akt activities. Furthermore, overexpression of IGF-1 in epidermis can act as a tumor promoter. BK5.IGF-1 transgenic mice developed papillomas after initiation with DMBA without further treatment with a tumor promoter such as TPA. Previous data has also shown that inhibition of the PI3K/Akt signaling pathway by the inhibitor LY294002 was able to reduce the number of tumors formed by IGF-1 mediated tumor promotion. The current studies presented demonstrate that Akt may be the critical effector molecule in IGF-1/IGF-1R mediated tumor promotion. We have found that inhibition of PI3K/Akt by LY294002 inhibits cell cycle components, particularly those associated with G1 to S phase transition including Cyclin D1, Cyclin E, E2F1, and E2F4, that are elevated in epidermis of BK5.IGF-1 transgenic mice. We have also demonstrated that Akt activation may be a central theme in early tumor promotion. In this regard, treatment with diverse tumor promoters such as TPA, okadaic acid, chrysarobin, and UVB was shown to activate epidermal Akt and its downstream signaling pathways after a single treatment. Furthermore, overexpression of Akt targeted to the basal cells of the epidermis led to hyperplasia and increased labeling index as determined by BrdU staining. These mice also had constitutively elevated levels of cell cycle components, particularly Cyclin D1, Cyclin E, E2F1, E2F4, and Mdm-2. These mice developed skin tumors following initiation with DMBA and were hypersensitive to the tumor promoting effects of TPA. Collectively, these studies provide evidence that Akt activation plays an important role in the process of mouse skin tumor promotion. ^
Resumo:
During T cell dependent immune responses, the acquisition of B cell memory from naïve cells takes place within a highly specialized microenvironment: The germinal centers (GC) of the secondary lymphoid organs. The GC reaction is a tightly regulated process in which the balance between survival and death is mediated by signals transduced through ligation of critical costimulatory molecules such as CD40 and CD154. While most cognate receptor-ligand interactions occur between T-cells and antigen (Ag)-presenting cells (APC) such as B-cells, evidence of homotypic B cell interactions has emerged. Despite the progress in our understanding of the reaction, several questions remain: (1) What determines the concomitant expression of CD40 and its ligand CD154 by GC B-cells? (2) Which molecules are responsible for inducing GC-B cell survival? and (3) how can cognate T-cell help be recruited into the organized structure of GCs? ^ Because the expression of costimulatory and survival molecules is predominant at distinct Ag-dependent maturation stages, we hypothesized the existence of stage specific gene expression responsible for the regulation of the GC reaction. Our studies reveal several novel genes whose expression may be critical for the GC reaction. The discovery of AKNA reveals the mechanism behind homotypic B cell CD40 and CD40 ligand interactions, which can explain the costimulatory signaling to GC B cells in the absence of T cells. Additionally, the identification of the pro-survival molecule PRELI may provide a novel mechanism for the survival of Ag-selected B cells. We propose that PRELI and its phylogenic homologues represent a novel family of proteins responsible for the protection of cells against caspase-independent apoptosis. Furthermore, we show that GC B cells actively participate in the recruitment of T cells through the secretion of CC and CxC chemokines, thus supporting their mutual involvement in cognate interactions. ^
Resumo:
Imatinib mesylate (IM) and Interferon-alfa (IFN-α) are currently the two most efficacious therapies for patients with chronic myelogenous leukemia (CML). IFN-α induces durable complete cytogentic remission (CCR) in about 25% of CML patients whereas IM, a tyrosine kinase inhibitor, induces CCR in 50% of patients who are resistant to IFN-α and in 75% of patients in early chronic phase of CML. However, the detection of minimal residual disease without clinical relapse suggests that host immune surveillance plays a very important role in controlling the progression of disease. ^ T lymphocytes and dendritic cells (DC) are the two most crucial players in the immune system. In my study, we focused on the effects of treatment with either IM or IFN-α on the functions of both DC and T cells, as exemplified by the ability of DC to present antigen to T cells and activated T cells to synthesize cytokines. Our studies show that cytokine production by T cells activated through the T-cell receptor (TCR) was significantly lower in CML patients treated with IM, but not with IFN-α, when compared with activated T cells of control subjects. Suppression of T cell function by IM albeit transient and reversible, was through the downregulation of the phosphorylation of Zap-70, Lck, and LAT. ^ Our data also show that the myeloid DC (DC1) and the plasmacytoid DC (DC2) are lower in chronic phase CML. Whereas neither therapy restored the level of DC2 to normal levels, the number of DC1 was normalized by either therapy. However, only IFN-α, and not IM, restored DC2 function to normal, as exemplified by the production of IFN-α in response to exposure to live influenza virus. Moreover, in vitro differentiation and maturation of DC1 from monocyte precursors in patients receiving either therapy was not normal and was reflected in their ability to present antigen to autologous T cells. ^ In summary, we report that there are differences in immune responses of CML patients treated with IM or IFN-α that may be the result of long-term effects on the host immune system by the individual therapy. ^
Resumo:
CYP4F subfamily comprises a group of enzymes that metabolize LTB4 to biologically less active metabolites. These inactive hydroxy products are incapable of chemotaxis and recruitment of inflammatory cells. This has led to a hypothesis that CYP4Fs may modulate inflammatory conditions serving as a signal of resolution. ^ We investigated the regulation of rat CYP4F gene expression under various inflammatory prompts including a bacterial lipopolysaccharide (LPS) treated model system, controlled traumatic brain injury (TBI) model as well as using direct cytokine challenges. CYP4Fs showed an isoform specific response to LPS. The pro-inflammatory cytokines IL-1β, IL-6 and TNF-α produced an overall inductive CYP4F response whereas IL-10, an anti-inflammatory cytokine, suppressed CYP4F gene expression in primary hepatocytes. The molecular mechanism behind IL-6 mediated CYP4F induction was partially STAT3 dependent. ^ An alternate avenue of triggering the inflammatory cascade is TBI, which is known to cause several secondary effects leading to multiorgan dysfunction syndrome. The results from this study elicited that trauma to the brain can produce acute inflammatory changes in organs distant from the injury site. Local production of LTB4 after CNS injury caused mobilization of inflammatory cells such as neutrophils to the lung. In the resolution phase, CYP4F expression increased with time along with the associated activity causing a decline in LTB4 concentration. This marked a significant reduction in neutrophil recruitment to the lung which led to subsequent recovery and repair. In addition, we showed that CYP4Fs are localized primarily in pulmonary endothelium. We speculate that the temporally regulated LTB4 clearance in the endothelium may be a novel target for treatment of pulmonary inflammation following injury. ^ In humans, several CYP4F isoforms have been identified and shown to metabolize LTB4 and other endogenous eicosanoids. However, the specific activity of the recently cloned human CYP4F11 is unknown. In the final part of this thesis, CYP4F11 protein was expressed in yeast in parallel to CYP4F3A. To our surprise, CYP4F11 displayed a different substrate profile than CYP4F3A. CYP4F3A metabolized eicosanoids while CYP4F11 was a better catalyst for therapeutic drugs. Thus, besides their endogenous function in clearing inflammation, CYP4Fs also may play a part in drug metabolism. ^