302 resultados para Biology, Molecular|Biology, Cell|Engineering, Biomedical


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In common with other members of the p120-catenin subclass of catenins, ARVCF-catenin appears to have multiple cellular and developmental functions. In Xenopus, our lab recently demonstrated that xARVCF- and Xp120-catenins are each essential for early vertebrate embryogenesis, being functionally linked to Rho-family GTPases (RhoA, Rac) and cadherin metabolic stability. For the project described here, the yeast two-hybrid system was employed to screen a Xenopus laevis neurula library for proteins that interact with xARVCF, resulting in the identification of the Xenopus homolog of Kazrin (xKazrin). Kazrin is a variably-spliced protein of unknown function that has been shown to interact with periplakin and envoplakin, components of desmosomal junctions. Kazrin's primary sequence is highly conserved across vertebrate species and is composed of an amino-terminal nuclear export sequence (NES), a carboxy-terminal nuclear localization sequence (NLS) and a central predicted coiled-coil domain. In vitro and in vivo authenticity tests demonstrated that xARVCF-catenin interacts directly with xKazrin via xARVCF's Armadillo and carboxy-terminal regions and xKazrin's coiled-coil domain. The interaction of xARVCF-catenin with xKazrin is specific and does not extend to the related Xp120-catenin. xKazrin co-localized with E-cadherin at sites of cell-cell contact and could be co-immunoprecipitated with components of the cadherin complex. xKazrin was also present in the cytoplasm and nucleus. Suggestive of a nuclear role, mutation of xKazrin's predicted NLS resulted in nuclear exclusion, while deletion of the predicted NES resulted in loss of sensitivity to nuclear export inhibitors. Within Xenopus embryos, xKazrin was expressed across all developmental stages and appeared at varying levels in adult tissues. Morpholino depletion of xKazrin from Xenopus embryos resulted in axial elongation abnormalities and loss of tissue integrity after neurulation. Over-expression of xKazrin had no effect, while over-expression of a NLS mutant resulted in a mild phenotype similar to that seen in xKazrin depleted embryos. Interestingly, the axial phenotype resulting from reduced xKazrin levels was largely rescuable by xARVCF over-expression. In conjunction with xARVCF-catenin, xKazrin has properties consistent with its function at cell-cell contact sites and in the nucleus. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

15-Lipoxygenase 2 (15-LOX2) is a recently cloned human lipoxygenase that shows tissue-restricted expression in prostate, lung, skin, and cornea. The protein level and enzymatic activity of 15-LOX2 have been shown to be down-regulated in prostate cancers compared with normal and benign prostate tissues. We report the cloning and functional characterization of 15-LOX2 and its three splice variants (termed 15-LOX2sv-a, 15-LOX2sv-b, and 15-LOX2sv-c) from primary prostate epithelial (NHP) cells. Western blotting with multiple NHP cell strains and prostate cancer (PCa) cell lines reveals that the expression of 15-LOX2 is lost in all PCa cell lines, accompanied by decreased enzymatic activity. 15-LOX2 is expressed at multiple subcellular locations, including cytoplasm, cytoskeleton, cell-cell border, and nucleus. Surprisingly, the three splice variants of 15-LOX2 are mostly excluded from the nucleus. To elucidate the relationship between nuclear localization, enzymatic activity, and tumor suppressive functions, we established PCa cell clones stably expressing 15-LOX2 or 15-LOX2sv-b. The 15-LOX2 clones express 15-LOX2 in the nuclei and possess robust enzymatic activity, whereas 15-LOX2sv-b clones show neither nuclear protein localization nor arachidonic acid-metabolizing activity. Interestingly, both 15-LOX2- and 15-LOX2sv-b-stable clones proliferate much slower in vitro when compared with control clones. When orthotopically implanted in nude mouse prostate, both 15-LOX2 and 15-LOX2sv-b suppress PC3 tumor growth in vivo. Finally, cultured NHP cells lose the expression of putative stem/progenitor cell markers, slow down in proliferation, and enter senescence. Several pieces of evidence implicate 15-LOX2 plays a role in replicative senescence of NHP cells: (1) promoter activity and the mRNA and protein levels of 15-LOX2 and its splice variants are upregulated in serially passaged NHP cells, which precede replicative senescence and occur in a cell-autonomous manner; (2) PCa cells stably expressing 15-LOX2 or 15-LOX2sv-b show a passage-related senescence-like phenotype; (3) enforced expression of 15-LOX2 or 15-LOX2sv-b in young NHP cells induce partial cell-cycle arrest and senescence-like phenotypes. Together, these results suggest that 15-LOX2 suppress prostate tumor development and do not necessarily depend on arachidonic acid-metabolizing activity and nuclear localization. Also, 15-LOX2 may serve as an endogenous prostate senescence gene and its tumor-suppressing functions might be associated with its ability to induce cell senescence. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to characterize the effects of IL-6 on endothelial cells and to investigate the role of IL-6 in the angiogenesis of ovarian carcinomas. We evaluated human ovarian carcinoma clinical specimens and determined that high expression of IL-6 was associated with increased tumor vascularization. Additionally, endothelial cells derived from the ovary and mesentery expressed the IL-6 receptor (IL-6R), and their stimulation with the exogenous ligand activated downstream signaling molecules and enhanced cell migration. Dual immunohistochemical staining for CD-31 and IL-6R revealed IL-6R expression on human endothelial cells within normal ovary and ovarian carcinomas. To further investigate the possible proangiogenic function of IL-6, Gelfoam sponges containing IL-6 or bFGF were implanted into the subcutis of BALB/c mice. IL-6 containing sponges were vascularized to the same extent as bFGF containing sponges. ^ Chronic stress can adversely affect disease progression. Stimulation of ovarian carcinoma cell lines with concentrations of catecholamines achieved in individuals experiencing chronic stress resulted in a substantial increase in IL-6 production. It was determined that stress mediators regulate IL-6 expression through the β-adrenergic receptor and Src. These data illustrate one mechanism by which chronic stress may influence tumor progression. ^ To investigate whether IL-6 contributes to the angiogenesis of ovarian carcinomas, we isolated low IL-6 expressing clones from the SKOV3.ip1 cell line and transfected them with a plasmid encoding the IL-6 gene. We observed no difference in tumor weight between high and low IL-6 expressing cells. However, while low IL-6 expressing tumors were highly vascularized, high IL-6 expressing tumors appeared hypervascularized. Immunohistochemical analysis revealed that all tumors exhibited robust expression of additional proangiogenic molecules. ^ Collectively, these studies indicate that IL-6 secreted by ovarian cancer cells is a highly proangiogenic cytokine. However, IL-6 is but one of several proangiogenic molecules produced by ovarian cancer, and its inhibition may not be sufficient to inhibit angiogenesis of ovarian carcinoma. The findings presented in this dissertation provide insight into the function of IL-6 as a regulator of angiogenesis. Understanding of the role of proangiogenic molecules such as IL-6 in ovarian carcinoma may have important implications for therapy directed at the vascular component of this disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultraviolet radiation (UVR) present in sunlight is the primary cause of nonmelanoma skin cancer and has been implicated in the development of cutaneous malignant melanoma. Ultraviolet radiation also suppresses the immune response. In the majority of studies investigating the mechanisms regulating UV-induced immune suppression, UV is used to suppress the induction of immune responses. Equally important, is the ability of UVR to suppress established immune responses, such as the recall reaction in humans, which protects against microbial infections. We established a murine model to help elucidate the immunological mechanisms governing UV-induced suppression of the elicitation of immune responses. 80 kJ/m2 of UVR nine days after sensitization consistently suppressed the elicitation of delayed type hypersensitivity reaction to C. albicans . We found ultraviolet A (320±400 nm) radiation was as effective as solar-simulated ultraviolet A + B (290±400 nm) in suppressing the elicitation of an established immune response. The mechanisms involved in UV-induced suppression of the induction & elicitation of the immune response are similar. For example, mice irradiated with UV after immunization generated antigen-specific T suppressor cells. Injection of monoclonal antibodies to IL-10 or recombinant IL-12 immediately after exposure to UVR blocked immune suppression. Liposomes containing bacteriophage T4N5 to the skin of mice also prevented immune suppression, demonstrating an essential role for ultraviolet-induced DNA damage in the suppression of established immune reactions. ^ In addition to damaging DNA, UV initiates immune suppression through the isomerization of urocanic acid in the epidermis. Here we provide evidence that cis-UCA induces systemic immunosuppression via the serotonin (5-hydroxyyryptamine; 5-HT) receptor. Biochemical and immunological analysis indicate that cis-UCA binds to, and activates, the serotonin receptor. Moreover, serotonin specific antibodies block UV- and/or cis-UCA-induced immune suppression. Our findings identify cis-UCA as novel serotonin receptor ligand and indicate that serotonin receptor engagement can activate immune suppression. Cumulatively, our data suggest that similar immune regulatory mechanisms are activated regardless of whether we expose mice to solar-simulated UV (UVA + UVB) radiation or UVA only, and that ultraviolet radiation activates similar immunologic pathways to suppress the induction or the elicitation of the immune response. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xp95 is the Xenopus ortholog of a conserved family of scaffold proteins that have in common an N-terminal Bro1 domain and a C-terminal proline rich domain (PRD). The regulation of this protein family is poorly understood. We previously showed that Xp95 undergoes a phosphorylation-dependant gel mobility shift during meiotic maturation of Xenopus oocytes, the only natural biological system in which post-translational modifications of this family has been demonstrated. Here we characterized Xp95 phosphorylation via two approaches. First, we tested a series of Xp95 fragments for the ability to gel-shift during oocyte maturation, and found that a fragment containing amino acids 705-786 is sufficient to cause a gel-shift. This fragment is within the N-terminal region of Xp95's PRD (N-PRD). Second, we purified phosphorylated Xp95 and by mass spectrometry found that a 5080 Da peptide which maps to N-PRD (amino acids 706-756) contains two phosphorylation sites, one of which is T745, within the conserved CIN85 binding motif. By in vitro protein interaction assays, we that T745 is critical for CIN85/Xp95 interaction, and that Xp95 phosphorylation correlates with loss of binding to CIN85. We also show that an Alix fragment (amino acids 604-789) also undergoes a gel-shift during oocyte maturation and during colcemid-induced mitotic arrest of HeLa cells. These findings indicate that Xp95/Alix is phosphorylated on the PRD during M phase induction and that the PRD phosphorylation regulates partner protein interaction. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epidermal growth factor receptor (EGFR) and its ligands are overexpressed in many human tumors, including bladder and pancreas, correlating with a more aggressive tumor phenotype and poor patient prognosis. We initiated the present study to characterize the heterogeneity of gefitinib responsiveness in a panel of human bladder and pancreatic cancer cell lines in order to identify the biological characteristics of EGFR-dependent proliferation that could be used to prospectively identify drug-sensitive tumors. A second objective was to elucidate how to best exploit these results by utilizing gefitinib in combination therapy. To these ends, we examined the effects of the EGFR antagonist gefitinib on proliferation and apoptosis in a panel of 18 human bladder cancer cell lines and 9 human pancreatic cancer cell lines. Our data confirmed the existence of marked heterogeneity in Iressa responsiveness with less than half of the cell lines displaying significant growth inhibition by clinically relevant concentrations of the drug. Gefitinib responsiveness was found to be p27 kip1 dependent as DNA synthesis was restored following exposure to p27siRNA. Unfortunately, Iressa responsiveness was not closely linked to surface EGFR or TGF-α expression in the bladder cancer cells, however, cellular TGF-α expression correlated directly with Iressa sensitivity in the pancreatic cancer cell lines. These findings provide the potential for prospectively identifying patients with drug-sensitive tumors. ^ Further studies aimed at exploiting gefitinib-mediated cell cycle effects led us to investigate if gefitinib-mediated TRAIL sensitization correlated with increased p27kip1 accumulation. We observed that increased TRAIL sensitivity following gefitinib exposure was not dependent on p27 kip1 expression. Additional studies initiated to examine the role(s) of Akt and Erk signaling demonstrated that exposure to PI3K or MEK inhibitors significantly enhanced TRAIL-induced apoptosis at concentrations that block target phosphorylation. Furthermore, combinations of TRAIL and the PI3K or MEK inhibitors increased procaspase-8 processing above levels observed with TRAIL alone, indicating that the effects were exerted at the level of caspase-8 activation, considered the earliest step in the TRAIL pathway. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) is a member of the TNF family of cytokines that induces apoptosis in a variety of tumor cells while sparing normal cells. However, many human cancer cell lines display resistance to TRAIL-induced apoptosis and the mechanisms contributing to resistance remain controversial. Previous studies have demonstrated that the dimeric transcription factor Nuclear Factor kappa B (NFκB) is constitutively active in a majority of human pancreatic cancer cell lines and primary tumors, and although its role in tumor progression remains unclear it has been suggested that NFκB contributes to TRAIL resistance. Based on this, I examined the effects of NFκB inhibitors on TRAIL sensitivity in a panel of nine pancreatic cancer cell lines. I show here that inhibitors of NFκB, including two inhibitors of the proteasome (bortezomib (Velcade™, PS-341) and NPI-0052), a small molecule inhibitor of IKK (PS1145), and a novel synthetic diterpene NIK inhibitor (NPI-1342) reverse TRAIL resistance in pancreatic cancer cell lines. Further analysis revealed that the expression of the anti-apoptosic proteins BclXL and XIAP was significantly decreased following exposure to these inhibitors alone and in combination with TRAIL. Additionally, treatment with NPI0052 and TRAIL significantly reduced tumor burden relative to the control tumors in an L3.6pl orthotopic pancreatic xenograft model. This was associated with a significant decrease in proliferation and an increase in caspase 3 and 8 cleavage. Combination therapy employing PS1145 or NPI-1342 in combination with TRAIL also resulted in a significant reduction in tumor burden compared to either agent alone in a Panc1 orthotopic xenograft model. My studies show that combination therapy with inhibitors of NFκB alone and TRAIL is effective in pre-clinical models of pancreatic cancer and suggests that the approach should be evaluated in patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies have led to the hypothesis that major risk factors for developing diseases such as hypertension, cardiovascular disease and adult-onset diabetes are established during development. This developmental programming hypothesis proposes that exposure to an adverse stimulus or insult at critical, sensitive periods of development can induce permanent alterations in normal physiological processes that lead to increased disease risk later in life. For cancer, inheritance of a tumor suppressor gene defect confers a high relative risk for disease development. However, these defects are rarely 100% penetrant. Traditionally, gene-environment interactions are thought to contribute to the penetrance of tumor suppressor gene defects by facilitating or inhibiting the acquisition of additional somatic mutations required for tumorigenesis. The studies presented herein identify developmental programming as a distinctive type of gene-environment interaction that can enhance the penetrance of a tumor suppressor gene defect in adult life. Using rats predisposed to uterine leiomyoma due to a germ-line defect in one allele of the tuberous sclerosis complex 2 (Tsc-2) tumor suppressor gene, these studies show that early-life exposure to the xenoestrogen, diethylstilbestrol (DES), during development of the uterus increased tumor incidence, multiplicity and size in genetically predisposed animals, but failed to induce tumors in wild-type rats. Uterine leiomyomas are ovarian-hormone dependent tumors that develop from the uterine myometrium. DES exposure was shown to developmentally program the myometrium, causing increased expression of estrogen-responsive genes prior to the onset of tumors. Loss of function of the normal Tsc-2 allele remained the rate-limiting event for tumorigenesis; however, tumors that developed in exposed animals displayed an enhanced proliferative response to ovarian steroid hormones relative to tumors that developed in unexposed animals. Furthermore, the studies presented herein identify developmental periods during which target tissues are maximally susceptible to developmental programming. These data suggest that exposure to environmental factors during critical periods of development can permanently alter normal physiological tissue responses and thus lead to increased disease risk in genetically susceptible individuals. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of proteasome inhibitors in cancer has received much attention with the recent FDA approval of bortezomib (Velcade/PS-341). However, in the chronic lymphocytic leukemia (CLL) clinical trial, bortezomib was not as effective as it was in vitro. Accordingly, results in prostate cancer were not remarkable, although regression of lymphadenopathy was observed. This response was also seen in CLL. ^ The proteasome degrades ∼80% of intracellular proteins. Although specific pathways affected by proteasome inhibitors are known, there are still unidentified mechanisms by which they induce apoptosis. The efficacy and mechanism of action of the reversible proteasome inhibitor bortezomib were compared to the novel irreversible inhibitor NPI-0052 in this study, and their mechanisms of action in CLL and prostate cancer were examined. ^ NPI-0052 inhibited proteasome activity and induced apoptosis with more rapid kinetics than bortezomib in CLL. Inhibition of proteasome activity with NPI-0052 was also more durable. Interestingly, bortezomib is cleared from the serum within 15min, which is insufficient time for bortezomib to effectively inhibit the proteasome. However, only 5min exposure was needed for NPI-0052 to produce maximal proteasome inhibition. The data suggest that bortezomib's slow kinetics and reversible nature limit its potential in vivo and the use of NPI-0052 should be considered. ^ In examining the mechanism(s) by which bortezomib and NPI-0052 induce apoptosis in CLL, both were found to elicit the ER stress pathway. A stromal cell co-culture system prevented apoptosis induced by both proteasome inhibitors, suggesting that if such factors in vivo were responsible for reducing bortezomib's efficacy, NPI-0052 would not prove useful either. Finally, Lyn, a Src family kinase (SFK), was decreased in response to bortezomib and NPI-0052 and correlated with apoptosis induction in CLL and prostate cancer. Both proteasome inhibitors specifically targeted Lyn rather than SFKs in general. ^ SFKs are overexpressed in cancer and involved in cell signaling, survival, and metastasis. In prostate cancer cells, both proteasome inhibition and Lyn-silencing significantly inhibited migration. Preliminary evidence also suggested that Lyn downregulation decreases invasion potential. Together, these data suggest that proteasome inhibitors are potential candidates for anti-metastasic therapy and further investigation is warranted for the use of Lyn-targeted therapy to treat metastases. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Notch signaling pathway plays a central role in metazoan growth and patterning, and its deregulation leads to many human diseases, including cancer. It is therefore important to understand the modes of Notch signaling regulation. Recent discoveries have demonstrated that mutations in conserved endosomal pathway components such as Erupted and Vps25 can ectopically activate Notch signaling in Drosophila. Mutations in the tumor suppressor lethal giant discs (lgd) display similar but even stronger and more specific Notch activation than in the erupted and vps25 mutant animals. This Notch activation in lgd mutant tissues causes hyperplastic overgrowth of the Drosophila imaginal discs, and the eventual lethality of the animal. However, the gene that encodes Lgd, and its function in the Notch pathway have not yet been identified. ^ I have found that Lgd is a novel, conserved C2 domain protein that regulates Notch trafficking. Lgd cell-autonomously restricts Notch signaling in the Drosophila wing disc to the target cells in the D/V boundary. The function of Lgd lies at or upstream of Notch S3 activation, but Lgd doesn't affect the binding affinities between Notch and Delta. Lgd is also not required for cis-inhibition of Notch signaling by ligands. Notch accumulates on the early endosome in lgd mutant cells and signals in a ligand-independent manner, a result that has previously been seen in endosomal pathway mutants. Interestingly, Notch activation in lgd mutant cells is dependent on the endosomal protein Hrs, and Lgd activity appears to be downstream of Hrs function in endocytosis. Taken together, my data identify Lgd as a novel tumor suppressor protein that regulates Notch signaling by targeting Notch for degradation or recycling. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over-expression of the receptor tyrosine kinase ErbB2 is prevalent in approximately 30% of human breast carcinomas and confers Taxol resistance. In breast cancer cells, Taxol induces tubulin polymerization and hyperstable microtubule formation. This in turn prematurely activates Cdc2 kinase allowing early entry into the G2/M phase of the cell cycle resultant in mitotic catastrophe followed by apoptosis. Over-expression of ErbB2 upregulates p21Cip1, which inhibits Cdc2 activation, and leads to Taxol resistance in patients. However, the mechanism of ErbB2-mediated p21 Cip1 upregulation is unclear. Here in this study, we investigated the mechanism of ErbB2 downstream signaling events leading to upregulation. The CDKN1A (p21Cip1) gene promoter contains numerous cis-elements including a Signal transducer and activator of transcription (STAT) Inducable Element (SIE) located at -679 kb. Our studies showed ErbB2 overexpressing cells had increased activated levels of STAT3, and therefore we hypothesized that STAT3 is responsible for the upregulation of the p21Cip1 promoter by ErbB2. EMSA and ChIP assays confirmed the binding of STAT3 to the p21Cip1 promoter and luciferase assays showed higher p21 Cip1 promoter activity in ErbB2 over-expressing transfectants when compared to parental cells, in a STAT3 binding site dependant manner. Additionally, reduced level of STAT3 led to reduced p21Cip1 protein expression and promoter activity indicating that both the STAT3 binding site and STAT3 protein are required for ErbB2-mediated p21Cip1 upregulation. Further investigation of ErbB2 downstream signaling showed increased Src kinase activity in ErbB2 over-expressing cells which was required for ErbB2-mediated STAT3 activation and p21Cip1 increase. Treatment of ErbB2 over-expressing resistant cells with STAT3 inhibitor peptides sensitized the cells to Taxol. In addition to classical signal transduction pathways, I identified a novel ErbB2 mediated regulatory mechanism of p21Cip1. I found that a nuclear ErbB2 and STAT3 complex binds directly to the p21Cip1 promoter offering a non-classical mechanism of p21Cip1 promoter regulation. These data suggest that ErbB2 over-expression can confer Taxol resistance of breast cancer cells by transcriptional upregulation of p21 Cip1 via activation of STAT3 by Src kinase and also by cooperation with nuclear ErbB2. The data suggest a potential clinical mechanism for STAT3 inhibitors in sensitizing ErbB2 over-expressing breast cancers to Taxol. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Caenorhabditis elegans germline is an excellent model system for studying meiosis, as the gonad contains germ cells in all stages of meiosis I prophase in a linear temporal and spatial pattern. To form healthy gametes, many events must be coordinated. Failure of any step in the process can reduce fertility. Here, we describe a C. elegans Germinal Center Kinase, GCK-1, that is essential for the accurate progression of germ cells through meiosis I prophase. In the absence of GCK-1, germ cells undergo precocious maturation due to the activation of a specific MAP kinase isoform. Furthermore, GCK-1 localizes to P-bodies, RNP particles that have been implicated in RNA degradation and translational control. Like two other components of C. elegans germline P-bodies, GCK-1 functions to limit physiological germ cell apoptosis. This is the first study to identify a role for a GCK-III kinase in metazoan germ cell development and to link P-body function with MAP kinase activation and germ cell maturation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian cells express 7 β-tubulin isotypes in a tissue specific manner. This has long fueled the speculation that different isotypes carry out different functions. To provide direct evidence for their functional significance, class III, IVa, and VI β-tubulin cDNAs were cloned into a tetracycline regulated expression vector and stably transfected Chinese hamster ovary cell lines expressing different levels of ectopic β-tubulin were compared for effects on microtubule organization, microtubule assembly and sensitivity to antimitotic drugs. It was found that all three isotypes coassembled with endogenous β-tubulin. βVI expression caused distinct microtubule rearrangements including microtubule dissociation from the centrosome and accumulation at the cell periphery; whereas expression of βIII and βVIa caused no observable changes in the interphase microtubule network. Overexpression of all 3 isotypes caused spindle malformation and mitotic defects. Both βIII and βIVa disrupted microtubule assembly in proportion to their abundance and thereby conferred supersensitivity to microtubule depolymerizing drugs. In contrast, βVI stabilized microtubules at low stoichiometry and thus conferred resistance to many microtubule destabilizing drugs but not vinblastine. The 3 isotypes caused differing responses to microtubule stabilizing drugs. Expression of βIII conferred paclitaxel resistance while βVI did not. Low expression of βIVa caused supersensitivity to paclitaxel, whereas higher expression resulted in the loss of supersensitivity. The results suggest that βIVa may possess an enhanced ability to bind paclitaxel that increases sensitivity to the drug and acts substoichiometrically. At high levels of βVIa expression, however, microtubule disruptive effects counteract the assembly promoting pressure exerted by increased paclitaxel binding, and drug supersensitivity is lost. From this study, I concluded that β-tubulin isotypes behave differently from each other in terms of microtubule organization, microtubule assembly and dynamics, and antimitotic drug sensitivity. The isotype composition of cell can impart subtle to dramatic effects on the properties of microtubules leading to potential functional consequences and opening the opportunity to exploit differences in microtubule isotype composition for therapeutic gain. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactions between neoplastic cells and the host stroma play a role in both tumor cell migration and proliferation. Stromal cells provide structural support for malignant cells, modulate the tumor microenvironment, and influence phenotypic behavior as well as the aggressiveness of the malignancy. In response, the tumor provides growth factors, cytokines, and cellular signals that continually initiate new stromal reactions and recruit new cells into the microenvironment to further support tumor growth. Since growing tumors recruit local cells, as well as supplemental cells from the circulation, such as fibroblasts and endothelial precursors, the question arises if it would be possible to access circulating stromal cells to modify the tumor microenvironment for therapeutic benefits. One such cell type, mesenchymal stem cells (MSC), could theoretically be engrafted into stroma. MSC are pluripotent cells that have been shown to form stromal elements such as myofibroblasts, perivascular tissues and connective tissues. Several reports have demonstrated that MSC can incorporate into sites of wound healing and tissue repair, due to active tissue remodeling and local paracrine factors, and given the similarity between wound healing and the carcinoma induced stromal response one can hypothesize that MSC have the potential to be recruited to sites of tumor development. In addition, gene-modified MSC could be used as cellular vehicles to deliver gene products into tumors. My results indicate that MSC home to and participate in tumor stroma formation in ovarian tumor xenografts in mice. Additionally, once homed to tumor beds, MSC proliferate rapidly and integrate. My studies aim at understanding the fate of MSC in the tumor microenvironment, as well as utilizing them for cellular delivery of therapeutic genes into the stroma of ovarian carcinomas. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynein light chain 1 (DLC1) is a highly conserved and ubiquitously expressed protein which might have critical cellular function as total loss of DLC1 caused Drosophila embryonic death. Despite many proteins and RNAs interaction with it identified, DLC1's function(s) and regulation are largely unknown. Recently, DLC1 was identified as a physiological substrate of P21-activate kinase 1(Pak1) kinase from a human mammary cDNA library in a yeast-2-hybridization screening assay. Studies in primary human tumors and cell culture implicated that DLC1 could promote mammary cancerous phenotypes, and more importantly, Ser88 phosphorylation of DLC1by Pak1 kinase was found to be essential for DLC1's tumorigenic activities. Based on the above tissue culture studies, we hypothesized that Ser88 phosphorylation regulates DLC1. ^ To test this hypothesis, we generated two transgenic mouse models: MMTV-DLC1 and MMTV-DLC1-S88A mice with mammary specific expression of the DLC1 and DLC1-S88A cDNAs. Both of the transgenic mice mammary glands showed rare tumor incidence which indicated DLC1 alone may not be sufficient for tumorigenesis in vivo. However, these mice showed a significant alteration of mammary development. Mammary glands from the MMTV-DLC1 mice had hyperbranching and alveolar hyperplasia, with elevated cell proliferation. Intriguingly, these phenotypes were not seen in the mammary glands from the MMTV-S88A mice. Furthermore, while MMTV-DLC1 glands were normal during involution, MMTV-S88A mice showed accelerated mammary involution with increase apoptosis and altered expression of involution-associated genes. Further analysis of the MMTV-S88A glands showed they had increased steady state level of Bim protein which might be responsible for the early involution. Finally, our in vitro data showed that Ser88 phosphorylation abolished DLC1 dimer and consequently might disturb its interaction with Bim and destabilize Bim. ^ Collectively, our findings provided in vivo evidence that Ser88 phosphorylation of DLC1 can regulate DLC1's function. In addition, Ser88 phosphorylation might be critical for DLC1 dimer-monomer transition. ^