252 resultados para Health Sciences, Nutrition|Sociology, Criminology and Penology
Resumo:
Nuclear morphometry (NM) uses image analysis to measure features of the cell nucleus which are classified as: bulk properties, shape or form, and DNA distribution. Studies have used these measurements as diagnostic and prognostic indicators of disease with inconclusive results. The distributional properties of these variables have not been systematically investigated although much of the medical data exhibit nonnormal distributions. Measurements are done on several hundred cells per patient so summary measurements reflecting the underlying distribution are needed.^ Distributional characteristics of 34 NM variables from prostate cancer cells were investigated using graphical and analytical techniques. Cells per sample ranged from 52 to 458. A small sample of patients with benign prostatic hyperplasia (BPH), representing non-cancer cells, was used for general comparison with the cancer cells.^ Data transformations such as log, square root and 1/x did not yield normality as measured by the Shapiro-Wilks test for normality. A modulus transformation, used for distributions having abnormal kurtosis values, also did not produce normality.^ Kernel density histograms of the 34 variables exhibited non-normality and 18 variables also exhibited bimodality. A bimodality coefficient was calculated and 3 variables: DNA concentration, shape and elongation, showed the strongest evidence of bimodality and were studied further.^ Two analytical approaches were used to obtain a summary measure for each variable for each patient: cluster analysis to determine significant clusters and a mixture model analysis using a two component model having a Gaussian distribution with equal variances. The mixture component parameters were used to bootstrap the log likelihood ratio to determine the significant number of components, 1 or 2. These summary measures were used as predictors of disease severity in several proportional odds logistic regression models. The disease severity scale had 5 levels and was constructed of 3 components: extracapsulary penetration (ECP), lymph node involvement (LN+) and seminal vesicle involvement (SV+) which represent surrogate measures of prognosis. The summary measures were not strong predictors of disease severity. There was some indication from the mixture model results that there were changes in mean levels and proportions of the components in the lower severity levels. ^
Resumo:
The goal of this study was to investigate the cellular and molecular mechanisms by which glutathione (GSH) is involved in the process of apoptosis induced by cisplatin [cis-diamminedichloroplatinum(II), cis-DDP] in the HL60 human promyelocytic leukemia cell line. The data show that during the onset or induction of apoptosis, GSH levels in cisplatin-treated cells increased 50% compared to control cells. The increase in intracellular GSH was associated with enhanced expression of γ-glutamylcysteine synthetase (γ-GCS), the enzyme that catalyzes the rate- limiting step in the biosynthesis of glutathione. After depletion of intracellular GSH with D,L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of γ-GCS, biochemical and morphological analysis revealed that the mechanism of cell death had switched from apoptosis to necrosis. In contrast, when intracellular GSH was elevated by exposure of cells to a GSH-ethyl-ester and then treatment with cisplatin, no change in the induction and kinetics of apoptosis were observed. However, when cells were exposed to cisplatin before intracellular GSH levels were increased, apoptosis was observed to occur 6 hours earlier compared to cells without GSH elevation. To further examine the molecular aspects of these effects of GSH on the apoptotic process, changes in the expression of bcl-2 and bax, were investigated in cells with depleted and elevated GSH. Using reverse transcription polymerase chain reaction, no significant change in the expression of bcl-2 gene transcripts was observed in cells in either the GSH depleted or elevated state; however, a 75% reduction in GSH resulted in a 40% decrease in the expression of bax gene transcripts. In contrast, a 6-fold increase in GSH increased the expression of bax by 3-fold relative to controls. Similar results were obtained for bax gene expression and protein synthesis by northern analysis and immunoprecipitation, respectively. These results suggest that GSH serves a dual role in the apoptotic process. The first role which is indirect, involves the protection of the cell from extensive damage following exposure to a specific toxicant so as to prevent death by necrosis, possibly by interacting with the DNA damaging agent and/or its active metabolites. The second role involves a direct involvement of GSH in the apoptotic process that includes upregulation of bax expression. ^
Resumo:
Cancer is a chronic disease that often necessitates recurrent hospitalizations, a costly pattern of medical care utilization. In chronically ill patients, most readmissions are for treatment of the same condition that caused the preceding hospitalization. There is concern that rather than reducing costs, earlier discharge may shift costs from the initial hospitalization to emergency center visits. ^ This is the first descriptive study to measure the incidence of emergency center visits (ECVs) after hospitalization at The University of M. D. Anderson Cancer Center (UTMDACC), to identify the risk factors for and outcomes of these ECVs, and to compare 30-day all-cause mortality and costs for episodes of care with and without ECVs. ^ We identified all hospitalizations at UTMDACC with admission dates from September 1, 1993 through August 31, 1997 which met inclusion criteria. Data were electronically obtained primarily from UTMDACC's institutional database. Demographic factors, clinical factors, duration of the index hospitalization, method of payment for care, and year of hospitalization study were variables determined for each hospitalization. ^ The overall incidence of ECVs was 18%. Forty-five percent of ECVs resulted in hospital readmission (8% of all hospitalizations). In 1% of ECVs the patient died in the emergency center, and for the remaining 54% of ECVs the patient was discharged home. Risk factors for ECVs were marital status, type of index hospitalization, cancer type, and duration of the index hospitalization. The overall 30-day all-cause mortality rate was 8.6% for hospitalizations with an ECV and 5.3% for those without an ECV. In all subgroups, the 30-day all-cause mortality rate was higher for groups with ECVs than for those without ECVs. The most important factor increasing cost was having an ECV. In all patient subgroups, the cost per episode of care with an ECV was at least 1.9 times the cost per episode without an ECV. ^ The higher costs and poorer outcomes of episodes of care with ECVs and hospital readmissions suggest that interventions to avoid these ECVs or mitigate their costs are needed. Further research is needed to improve understanding of the methodological issues involved in relation to health care issues for cancer patients. ^
Resumo:
Myelosuppression is a common side effect of anticancer agents such as cisplatin. This makes patients more susceptible to infections. Gentamicin is an aminoglycoside antibiotic that is very effective in the treatment of gram negative infections. Both these drugs are excreted by the kidney, and are also nephrotoxic. Thus, each may affect the disposition of the other. This project deals with the nature and duration of the effects of cisplatin on gentamicin pharmacokinetics in F-344 rats.^ The appropriate cisplatin dose was determined by comparing the nephrotoxicity of four intravenous doses--3, 4, 5, and 6 mg/kg. The 6 mg/kg dose gave the most consistent nephrotoxic effect, with peak plasma urea nitrogen and creatinine levels on the 7th day. Plasma and tissue gentamicin levels were compared between rats given gentamicin alone (30 mg/kg, intraperitoneally, twice a day for four days), and those given cisplatin (6 mg/kg, intraperitoneally) with the first gentamicin dose. Cisplatin caused a significant elevation of gentamicin levels in plasma, liver, and spleen. However, cisplatin given in three weekly doses of 2 mg/kg each, had no effect on plasma or tissue gentamicin levels.^ In order to determine the duration of cisplatin effects, a single dose of gentamicin (30 mg/kg, intravenously) was given to different groups of rats either alone, or on day 1, 4, 7, 15, or 29 following cisplatin (6 mg/kg, intravenously on day 1). Plasma samples were collected through a cannula placed on the external jugular vein at 0.5, 1, 2, 3, 4, 5, and 6 hours after gentamicin; the rats were sacrificed at 24 hours. Cisplatin caused a significant decrease in gentamicin excretion and an elevation of gentamicin levels in plasma, kidneys, liver, and spleen at all the time points that were tested, except with concomitant administration. Plasma urea nitrogen was elevated, and creatinine clearance decreased by the 4th day after cisplatin and these continued to be significantly different even on the 29th day after cisplatin.^ These results demonstrate that cisplatin nephrotoxicity reduced gentamicin excretion for at least a month in F-344 rats. This could increase the risk of toxicity from the second drug by elevating its levels in plasma and tissue. Thus, caution should be exercised when renally excreted drugs are given after cisplatin. ^
Resumo:
Trace metal imbalances have been implicated in several disease and nutritional states. There is mounting concern to identify the nutritional balance of the trace metals needed for growth, mental acuity and physical functioning. These two factors, diseases in which trace metals show involvement and nutritional balance, have made it necessary to be able to accurately describe the trace metal balances of an individual. Although several investigators have measured the concentration of trace metals in the hair and related those observed concentrations to various disease and nutritional states, no one has satisfactorily answered the questions of whether hair is useful to determine trace metal imbalances, whether the concentrations found in hair reflect tissue or serum concentrations of the trace metals, or whether any tissue accurately reflects body status of the trace metals.^ Male mice were used to examine several tissues, heart, liver, kidney, spleen, intestine, brain, bone, hair and serum for copper and zinc concentrations. The environment and dietary intake of the animals were carefully controlled, so that environmental and physical variables were minimized. Dietary intake of zinc was varied while copper intake was held constant. Each experimental diet group was matched with a pair fed control group.^ Of the tissues examined, only the serum was indicative of an early state of zinc imbalance. Neither hair nor the other tissues examined for copper and zinc concentrations were indicative of an acute zinc imbalance in a normal mature mouse. Zinc deficiencies or excesses may manifest themself differently in the chronic imbalance state or in the weanling, aged or traumatized mouse. The tissue response to zinc imbalance may vary in these cases. ^
Resumo:
The uptake, metabolism, and metabolic effects of the antitumor tricyclic nucleoside (TCN, NSC-154020) were studied in vitro. Uptake of TCN by human erythrocytes was concentrative, resulting mainly from the rapid intracellular phosphorylation of TCN. At high TCN doses, however, unchanged TCN was also concentrated within the erythrocytes. The initial linear rate of TCN uptake was saturable and obeyed Michaelis-Menten kinetics. TCN was metabolized chiefly to its 5'-monophosphate not only by human erythrocytes but also by wild-type Chinese hamster ovary (CHO) cells. In addition, three other metabolites were detected by means of high-performance liquid chromatography. The structures of these metabolites were elucidated by ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and further confirmed by incubations with catabolic enzymes and intact wild-type or variant CHO cells. All were novel types of oxidative degradation products of TCN. Two are proposed to be (alpha) and (beta) anomers of a D-ribofuranosyl nucleoside with a pyrimido{4,5-c}pyridazine-4-one base structure. The third metabolite is most likely the 5'-monophosphate of the (beta) anomer. A CHO cell line deficient in adenosine kinase activity failed to phosphorylate either TCN or the (beta) anomer. No further phosphorylation of the 5'-monophosphates by normal cells occurred. Although the pathways leading to the formation of these TCN metabolites have not been proven, a mechanism is proposed to account for the above observations. The same adenosine kinase-deficient CHO cells were resistant to 500 (mu)M TCN, while wild-type cells could not clone in the presence of 20 (mu)M TCN. Simultaneous addition of purines, pyrimidines, and purine precursors failed to reverse this toxicity. TCN-treatment strongly inhibited formate or glycine incorporation into ATP and GTP of wild-type CHO cells. Hypoxanthine incorporation inhibited to a lesser degree, with the inhibition of incorporation into GTP being more pronounced. Although precursor incorporation into GTP was inhibited, GTP concentrations were elevated rather than reduced after 4-hr incubations with 20 (mu)M or 50 (mu)M TCN. These results suggested an impairment of GTP utilization. TCN (50 (mu)M) inhibited leucine and thymidine incorporation into HClO(,4)-insoluble material to 30-35% of control throughout 5-hr incubations. Incorporation of five other amino acids was inhibited to the same extent as leucine. Pulse-labeling assays (45 min) with uridine, leucine, and thymidine failed to reveal selective inhibition of DNA or protein synthesis by 0.05-50 (mu)M TCN; however, the patterns of inhibition were similar to those of known protein synthesis inhibitors. TCN 5'-monophosphate inhibited leucine incorporation by rabbit reticulocyte lysates; the inhibition was 2000 times less potent than that of cycloheximide. The 5'-monophosphate failed to inhibit a crude nuclear DNA-synthesizing system. Although TCN 5'-monophosphate apparently inhibits purine synthesis de novo, its cytotoxicity is not reversed by exogenous purines. Consequently, another mechanism such as direct inhibition of protein synthesis is probably a primary mechanism of toxicity. ^
Resumo:
The discoveries of the BRCA1 and BRCA2 genes have made it possible for women of families with hereditary breast/ovarian cancer to determine if they carry cancer-predisposing genetic mutations. Women with germline mutations have significantly higher probabilities of developing both cancers than the general population. Since the presence of a BRCA1 or BRCA2 mutation does not guarantee future cancer development, the appropriate course of action remains uncertain for these women. Prophylactic mastectomy and oophorectomy remain controversial since the underlying premise for surgical intervention is based more upon reduction in the estimated risk of cancer than on actual evidence of clinical benefit. Issues that are incorporated in a woman's decision making process include quality of life without breasts, ovaries, attitudes toward possible surgical morbidity as well as a remaining risk of future development of breast/ovarian cancer despite prophylactic surgery. The incorporation of patient preferences into decision analysis models can determine the quality-adjusted survival of different prophylactic approaches to breast/ovarian cancer prevention. Monte Carlo simulation was conducted on 4 separate decision models representing prophylactic oophorectomy, prophylactic mastectomy, prophylactic oophorectomy/mastectomy and screening. The use of 3 separate preference assessment methods across different populations of women allows researchers to determine how quality adjusted survival varies according to clinical strategy, method of preference assessment and the population from which preferences are assessed. ^
Resumo:
Cell signaling by nitric oxide (NO) through soluble guanylyl cyclase (sGC) and cGMP production regulates physiological responses such as smooth muscle relaxation, neurotransmission, and cell growth and differentiation. Although the NO receptor, sGC, has been studied extensively at the protein level, information on regulation of the sGC genes remains elusive. In order to understand the molecular mechanisms involved at the level of gene expression, cDNA and genomic fragments of the murine sGCα1 subunit gene were obtained through library screenings. Using the acquired clones, the sGCα 1 gene structure was determined following primer extension, 3 ′RACE and intron/exon boundary analyses. The basal activity of several 5′-flanking regions (putative promoter regions) for both the α1 and β1 sGC subunits were determined following their transfection into mouse N1E-115 neuroblastoma and rat RENE1Δ14 uterine epithelial cells using a luciferase reporter plasmid. Using the sGC sequences, real-time RT-PCR assays were designed to measure mRNA levels of the sGC α1 and β1 genes in rat, mouse and human. Subsequent studies found that uterine sGC mRNA and protein levels decreased rapidly in response to 17β-estradiol (estrogen) in an in vivo rat model. As early as 1 hour following treatment, mRNA levels of both sGC mRNAs decreased, and reached their lowest level of expression after 3 hours. This in vivo response was completely blocked by the pure estrogen receptor antagonist, ICI 182,780, was not seen in several other tissues examined, did not occur in response to other steroid hormones, and was due to a post-transcriptional mechanism. Additional studies ex vivo and in various cell culture models suggested that the estrogen-mediated decreased sGC mRNA expression did not require signals from other tissues, but may require cell communication or paracrine factors between different cell types within the uterus. Using chemical inhibitors and molecular targeting in other related studies, it was revealed that c-Jun-N-terminal kinase (JNK) signaling was responsible for decreased sGC mRNA expression in rat PC12 and RFL-6 cells, two models previously determined to exhibit rapid decreased sGC mRNA expression in response to different stimuli. To further investigate the post-transcriptional gene regulation, the full length sGCα1 3′-untranslated region (3′UTR) was cloned from rat uterine tissue and ligated downstream of the rabbit β-globin gene and expressed as a chimeric mRNA in the rat PC12 and RFL-6 cell models. Expression studies with the chimeric mRNA showed that the sGCα 1 3′UTR was not sufficient to mediate the post-transcriptional regulation of its mRNA by JNK or cAMP signaling in PC12 and RFL-6 cells. This study has provided numerous valuable tools for future studies involving the molecular regulation of the sGC genes. Importantly, the present results identified a novel paradigm and a previously unknown signaling pathway for sGC mRNA regulation that could potentially be exploited to treat diseases such as uterine cancers, neuronal disorders, hypertension or various inflammatory conditions. ^
Resumo:
Staphylococcus aureus is an opportunistic pathogen that is a major health threat in the clinical and community settings. An interesting hallmark of patients infected with S. aureus is that they do not usually develop a protective immune response and are susceptible to reinfection, in part because of the ability of S. aureus to modulate host immunity. The ability to evade host immune responses is a key contributor to the infection process and is critical in S. aureus survival and pathogenesis. This study investigates the immunomodulatory effects of two secreted proteins produced by S. aureus, the MHC class II analog protein (Map) and the extracellular fibrinogen-binding protein (Efb). Map has been demonstrated to modulate host immunity by interfering with T cell function. Map has been shown to significantly reduce T cell proliferative responses and significantly reduce delayed-type hypersensitivity responses to challenge antigen. In addition, the effects of Map on the infection process were tested in a mouse model of infection. Mice infected with Map− S. aureus (Map deficient strain) presented with significantly reduced levels of arthritis, osteomyelitis and abscess formation compared to mice infected with the wild-type Map+S. aureus strain suggesting that Map−S. aureus is much less virulent than Map+S. aureus. Furthermore, Map−S. aureus-infected nude mice developed arthritis and osteomyelitis to a severity similar to Map +S. aureus-infected controls, suggesting that T cells can affect disease outcome following S. aureus infection and Map may attenuate cellular immunity against S. aureus. The extracellular fibrinogen-binding protein (Efb) was identified when cultured S. aureus supernatants were probed with the complement component C3. The binding of C3 to Efb resulted in studies investigating the effects of Efb on complement activation. We have demonstrated that Efb can inhibit both the classical and alternative complement pathways. Moreover, we have shown that Efb can inhibit complement mediated opsonophagocytosis. Further studies have characterized the Efb-C3 binding interaction and localized the C3-binding domain to the C-terminal region of Efb. In addition, we demonstrate that Efb binds specifically to a region within the C3d fragment of C3. This study demonstrates that Map and Efb can interfere with both the acquired and innate host immune pathways and that these proteins contribute to the success of S. aureus in evading host immunity and in establishing disease. ^
Resumo:
Cellular migration is essential to many normal cellular processes. In tumor cells, aberrant activation of the normal pathways regulating migration is one of the critical steps in the development of metastasis. Previously, I demonstrated for the first time that overexpression of Tiam1, a guanine nucleotide exchange factor (GNEF) for small G proteins in the Rho family, could alter migration in colorectal tumor cells. ^ This dissertation focuses on the roles of Tiam1 in promoting cell migration, survival, and metastasis of colorectal carcinoma cells, utilizing the model system I developed. To determine the in vivo phenotype of the migratory cell lines, athymic nude mice were injected with cells into the orthotopic site. Several of the mice injected with cells of increased migratory potential had metastases. Thus, the in vitro selection for increased migration resulted in increased metastatic potential in vivo, and therefore, the Tiam1-overexpressing cells provide a model to examine signal transduction pathways important to this process. ^ To examine effects of Tiam1 signaling on small G proteins critical to cellular functions associated with migration, I examined the activation status of the small G proteins Rac, Rho, and Cdc42. The cells of increased migratory potential have increased GTP-bound Rac and Rho, compared to control SW480 cells. Cells that overexpress Tiam1 are more migratory and are resistant to detachment-induced death, or anoikis. To determine which effects and phenotypes were Tiam1-specific, we utilized siRNA to downregulate Tiam1 expression. These results demonstrate that Tiam1 is sufficient but not required for the migration of colorectal carcinoma cells in our model system, and that the biologically selected cells have additional changes that promote migration besides the increase in Tiam1. I also show that Tiam1 protects colorectal carcinoma cells from detachment-induced death, but is not required for anoikis resistance in the biologically selected migratory cells. ^ In summary, my studies demonstrate a heretofore-unknown regulator of phenotypes critical to the development of colorectal carcinoma metastases, overexpression of Tiam1. Understanding the mechanism by which Tiam1 contributes to cellular migration and metastasis is crucial to developing desperately needed new therapies for colorectal carcinoma. ^