589 resultados para Biology, Cell|Health Sciences, Human Development


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex molecular events underlie vertebrate eye development and disease. The eye is composed of two major tissue types: the anterior and posterior segments. During development, the retinal progenitor cells differentiate into six neuronal and one non-neuronal cell types. These cell types later organize into the distinct laminar structure of the mature retina which occupies the posterior segment. In the developed anterior segment, both the ciliary body and trabecular meshwork regulate intraocular pressure created by the aqueous humor. The disruption in intraocular pressure can lead to a blinding condition called glaucoma. To characterize molecular mechanisms governing retinal development and glaucoma, two separate mouse knockout lines carrying mutations in math5 and myocilin were subjected to a series of in vivo analyses. ^ Math5 is a murine homologue of Drosophila atonal , a bHLH proneural gene essential for the formation of photoreceptor cells. The expression of math5 coincides with the onset of retinal ganglion cell differentiation. The targeted deletion of mouse math5 revealed that a null mutation inhibits the formation of a majority of the retinal ganglion cells. The mutation also interferes with the normal development of other retinal cell types such as amacrine, bipolar and photoreceptor cells. These results suggest that math5 is a proneural gene responsible for differentiation of retinal ganglion cells and may also have a role in normal development of other neuronal cell types within the retina. ^ Myocilin has two unique protein coding regions bearing homology to non-muscle myosin of Dictyostelium discoideum and to olfactomedin, an extracellular matrix molecule first described in the olfactory epithelium of the bullfrog. Recently, autosomal dominant forms of myocilin mutations have been found in individuals with primary open-angle glaucoma. The genetic linkage to glaucoma suggests a role of myocilin in normal intraocular pressure and ocular function. However, the analysis of mice heterozygous and homozygous for a targeted null mutation in myocilin indicates that it is dispensable for normal intraocular pressure or ocular function. Additionally, the lack of a discernable phenotype in both heterozygous and null mice suggests that haploinsufficiency is not a critical mechanism for MYOC-associated glaucoma in humans. Instead, disease-causing mutations likely act by gain of function. ^ In summary, these studies provide novel insights into the embryonic development of the vertebrate retina, and also begin to uncover the molecular mechanisms responsible for the pathogenesis of glaucoma. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last few years, our laboratory has studied the regulatory mechanisms of proliferation and differentiation in epidermal tissues. Our results showed differences in the roles of cyclin dependent-kinases 4 and 6, and the three D-type cyclins, during normal epidermal proliferation and neoplastic development. Thus, to elucidate the role of the different cell cycle regulators, we developed transgenic mice that overexpress CDK4 (K5-CDK4), or their cognate D-type cyclins, in epithelial tissues. The most severe phenotype was observed in K5-CDK4 animals that developed dermal fibrosis, epidermal hyperplasia and hypertrophy. Forced expression of CDK4 in the epidermal basal cell layer increased the malignant conversion of skin papillomas to squamous cell carcinomas (SCC). Contrastingly, lack of CDK4 completely inhibited tumor development, suggesting that CDK4 is required in this process. Biochemical studies demonstrated that p21 Cip1 and p27Kip1 inhibitors are sequestered by CDK4 resulting in indirect activation of Cyclin E/CDK2, implicating the non-catalytic activity of CDK4 in deregulation of the cell cycle progression. ^ It has been proposed that the proliferative and oncogenic role of Myc is linked to its ability to induce the transcription of CDK4, cyclin D1, and cyclin D2 in vitro. Deregulation of Myc oncogene has been found in several human cancers. Also it has been demonstrated that CDK4 has the ability to functionally inactivate the product of the tumor suppressor gene Rb, providing a link between Myc and the CDK4/cyclin D1/pRb/p16 pathway in some malignant tumors. Here, we sought to determine the role of CDK4 as a mediator of Myc activities by developing a Myc overexpressing mouse nullizygous for CDK4. We demonstrated that lack of CDK4 results in reduced keratinocyte proliferation and epidermal thickness in K5-Myc/CDK4-null mice. In addition, complete reversion of tumor development was observed. All together, this work demonstrates that CDK4 acts as an oncogene independent of the D-type cyclin levels and it is an important mediator of the tumorigenesis induced by Myc. In addition, we showed that the sequestering activity of CDK4 is critical for the development of epidermal hyperplasia during normal proliferation, malignant progression from papillomas to squamous cell carcinomas, and tumorigenesis induced by Myc. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human GSTP1 gene has been shown, conclusively, to be polymorphic. The three main GSTP1 alleles, GSTP1*A, GSTP1*B, and GSTP1*C, encode proteins which differ in the 3-dimensional structure of their active sites and in their function in phase II metabolism of carcinogens, mutagens, and anticancer agents. Although, it is well established that GSTP1 is over expressed in many human tumors and that the levels of GSTP1 expression correlate directly with tumor resistance to chemotherapy and inversely with patient survival, the significance of the polymorphic GSTP1 gene locus on tumor response to chemotherapy remains unclear. The goal of this project was to define the role and significance of the polymorphic GSTP1 gene locus in GSTP1-based tumor drug resistance and as a determinant of patient response to chemotherapy. The hypothesis to be tested was that the polymorphic GSTP1 gene locus will confer to tumors a differential ability to metabolize cisplatin resulting in a GSTP1 genotype-based sensitivity to cisplatin. The study examined: (a) whether the different GSTP 1 alleles confer different levels of cellular protection against cisplatin-induced cytotoxicity, (b) whether the allelic GSTP1 proteins metabolize cisplatin with different efficiencies, and (c) whether the GSTP1 genotype is a determinant of tumor response to cisplatin therapy. The results demonstrate that the GSTP1 alleles differentially protect tumors against cisplatin-induced apoptosis and clonogenic cell kill in the rank order: GSTP1*C > GSTP1*B > GSTP1*A. The same rank order was observed for the kinetics of GSTP1-catalyzed cisplatin metabolism, both in cell-free and cellular systems, to the rate-limiting monoglutathionyl-platinum metabolite, which was characterized, for the first time, by mass spectral analysis. Finally, this study demonstrates that both GSTP1 genotype and the level of GSTP1 expression significantly contribute to tumor sensitivity to cisplatin treatment. Overall, the results of this project show that the polymorphic GSTP1 gene locus plays a significant role in tumor sensitivity to cisplatin treatment. Furthermore, these studies have contributed to the overall understanding of the significance of the polymorphic GSTP1 gene locus in tumor resistance to cancer chemotherapy and have provided the basis for further investigations into how this can be utilized to optimize and individualize cancer chemotherapy for cancer patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infection with certain types of HPV is a necessary event in the development of cervical carcinoma; however, not all women who become infected will progress. While much is known about the molecular influence of HPV E6 and E7 proteins on the malignant transformation, little is known about the additional factors needed to drive the process. Currently, conventional cervical screening is insufficient at identifying women who are likely to progress from premalignant lesions to carcinoma. Aneuploidy and chromatin texture from image cytometry have been suggested as quantitative measures of nuclear damage in premalignant lesions and cancer, and traditional epidemiologic studies have identified potential factors to aid in the discrimination of those lesions likely to progress. ^ In the current study, real-time PCR was used to quantitate mRNA expression of the E7 gene in women exhibiting normal epithelium, LSIL, and HSIL. Quantitative cytometry was used to gather information about the DNA index and chromatin features of cells from the same women. Logistic regression modeling was used to establish predictor variables for histologic grade based on the traditional epidemiologic risk factors and molecular markers. ^ Prevalence of mRNA transcripts was lower among women with normal histology (27%) than for women with LSIL (40%) and HSIL (37%) with mean levels ranging from 2.0 to 4.2. The transcriptional activity of HPV 18 was higher than that of HPV 16 and increased with increasing level of dysplasia, reinforcing the more aggressive nature of HPV 18. DNA index and mRNA level increased with increasing histological grade. Chromatin score was not correlated with histology but was higher for HPV 18 samples and those with both HPV 18 and HPV 16. However, chromatin score and DNA index were not correlated with mRNA levels. The most predictive variables in the regression modeling were mRNA level, DNA index, parity, and age, and the ROC curves for LSIL and HSIL indicated excellent discrimination. ^ Real-time PCR of viral transcripts could provide a more efficient method to analyze the oncogenic potential within cells from cervical swabs. Epidemiological modeling of malignant progression in the cervix should include molecular markers, as well as the traditional epidemiological risk factors. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thiazolidinediones (TZDs), a novel class of anti-diabetic drugs, have been known as ligands of peroxisome proliferator-activated receptor γ (PPARγ), a transcription factor that belongs to the nuclear receptor superfamily. These synthetic compounds improve insulin sensitivity in patients with type II diabetes likely through activating PAPRγ. Interestingly, they were also shown to inhibit cell growth and proliferation in a wide variety of tumor cell lines. The aim of this study is to assess the potential use of TZDs in the prevention of carcinogenesis using mouse skin as a model. ^ We found that troglitazone, one of TZD drugs, strongly inhibited cultured mouse skin keratinocyte proliferation as demonstrated by [3H]thymidine incorporation assay. It also induced a cell cycle G1 phase arrest and inhibited expression of cell cycle proteins, including cyclin D1, cdk2 and cdk4. Further experiments showed that PPARγ expression in keratinocytes was surprisingly undetectable in vitro or in vivo. Consistent with this, no endogenous PPARγ function in keratinocytes was found, suggesting that the inhibition of troglitazone on keratinocyte proliferation and cell cycle was PPARγ-independent. We further found that troglitazone inhibited insulin/insulin growth factor I (IGF-1) mitogenic signaling, which may explains, at least partly, its inhibitory effect on keratinocyte proliferation. We showed that troglitazone rapidly inhibited IGF-1 induced phosphorylation of p70S6K by mammalian target of rapamycin (mTOR). However, troglitazone did not directly inhibit mTOR kinase activity as shown by in vitro kinase assay. The inhibition of p70S6K is likely to be the result of strong activation of AMP activated protein kinase (AMPK) by TZDs. Stable expression of a dominant negative AMPK in keratinocytes blocked the inhibitory effect of troglitazone on IGF-1 induced phosphorylation of p70S6K. ^ Finally, we found that dietary TZDs inhibited by up to 73% mouse skin tumor development promoted by elevated IGF-1 signaling in BK5-IGF-1 transgenic mice, while they had no or little effect on skin tumor development promoted by 12-O-tetradecanoylphorbol-13-acetate (TPA) or ultraviolet (UV). Since IGF-1 signaling is frequently found to be elevated in patients with insulin resistance and in many human tumors, our data suggest that TZDs may provide tumor preventive benefit particularly to these patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epigenetic silencing of tumor suppressor genes by DNA hypermethylation at promoter regions is a common event in carcinogenesis and tumor progression. Abrogation of methylation and reversal of epigenetic silencing is a very potent way in cancer treatment. However, the reactivation mechanisms are poorly understood. In this study, we first developed a cell line model system named YB5, derived from SW48 cancer cell line, which bears one copy of stably integrated EGFP gene on Chromosome 1p31.1 region. The GFP gene expression is transcriptionally silenced due to the hypermethylated promoter CMV. However, the GFP expression can be restored using demethylating agent 5-aza-2' deoxycytidine (DAC), and detected by FACS and fluorescent microscopy. Using this system, we observed the heterogeneous reactivation induced by DAC treatment. After flow sorting, GFP negative cells exhibited similar level of incomplete demethylation compared to GFP positive cells on repetitive LINE1 element, tumor suppressor genes such as P16, CDH13, and RASSF1a, and CMV promoter as well. However, the local chromatin of CMV-GFP locus altered to an open structure marked by high H3 lysine 9 acetylation and low H3 lysine 27 tri-methylation in GFP positive cells, while the GFP negative cells retained mostly the original repressive marks. Thus, we concluded that DAC induced DNA hypomethylation alone does not directly determine the level of re-expression, and the resetting of the local chromatin structure under hypomethylation environment is required for gene reactivation. Besides, a lentivirus vector-based shRNA screening was performed using the YB5 system. Although it is the rare chance that vector lands in the neighboring region of GFP, we found that the exogenous vector DNA inserted into the upstream region of GFP gene locus led to the promoter demethylation and reactivated the silenced GFP gene. Thus, epigenetic state can be affected by changing of the adjacent nucleic acid sequences. Further, this hypermethylation silenced system was utilized for epigenetic drug screening. We have found that DAC combined with carboplatin would enhance the GFP% yield and increase expression of other tumor suppressor genes than DAC alone, and this synergistic effect may be related to DNA repair process. In summary, these studies reveal that reversing of methylation silencing requires coordinated alterations of DNA methylation, chromatin structure, and local microenvironment. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic exposure of the airways to cigarette smoke induces inflammatory response and genomic instability that play important roles in lung cancer development. Nuclear factor kappa B (NF-κB), the major intracellular mediator of inflammatory signals, is frequently activated in preneoplastic and malignant lung lesions. ^ Previously, we had shown that a lung tumor suppressor GPRC5A is frequently repressed in human non-small cell lung cancers (NSCLC) cells and lung tumor specimens. Recently, other groups have shown that human GPRC5A transcript levels are higher in bronchial samples of former than of current smokers. These results suggested that smoking represses GPRC5A expression and thus promotes the occurrence of lung cancer. We hypothesized that cigarette smoking or associated inflammatory response repressed GPRC5A expression through NF-κB signaling. ^ To determine the effect of inflammation, we examined GPRC5A protein expression in several lung cell lines following by TNF-α treatment. TNF-α significantly suppressed GPRC5A expression in normal small airway epithelial cells (SAEC) as well as in Calu-1 cells. Real-time PCR analysis indicated that TNF-α inhibits GPRC5A expression at the transcriptional level. NF-κB, the major downstream effectors of TNF-α signaling, mediates TNF-α-induced repression of GPRC5A because over-expression of NF-κB suppressed GPRC5A. To determine the region in the GPRC5A promoter through which NF-κB acts, we examined the ability of TNF-α to inhibit a series of reporter constructs with different deletions of GPRC5A promoter. The luciferase assay showed that the potential NF-κB binding sites containing region are irresponsible for TNF-α-induced suppression. Further analysis using constructs with different deletions in p65 revealed that NF-κB-mediated repression of GPRC5A is transcription-independent. Co-immunoprecipitation assays revealed that NF-κB could form a complex with RAR/RXR heterodimer. Moreover, the inhibitory effect of NF-κB has been found to be proportional to NF-κB/RAR ratio in luciferase assay. Finally, Chromatin IP demonstrated that NF-κB/p65 bound to GPRC5A promoter as well as RAR/RXR and suppressed transcription. Taken together, we propose that inflammation-induced NF-κB activation disrupts the RA signaling and suppresses GPRC5A expression and thus contributes to the oncogenesis of lung cancer. Our studies shed new light on the pathogenesis of lung cancer and potentially provide novel interventions for preventing and treating this disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural tube defects including spina bifida meningomyelocele (SBMM) are common malformations of the brain and spinal cord, and include all abnormalities resulting from lack of closure of the developing neural tube during embryological development.^ The specific aims of this study were to determine if single nucleotide polymorphic variants (SNPs) in the folate/homocysteine metabolic pathway genes confer a risk for NTD susceptibility within this SBMM population.^ In completion of the first specific aim, two novel SNPs were identified in the FOLR1 gene in Chromosome 11of patients including one in non-coding exon 1 with a C → T transition at nucleotide position 71578317 and another in non-coding exon 3 with a T → G transversion at nucleotide position 71579123. It will be important to determine if these variants are present in the respective parents of these individuals. If they are in fact de novo variants, then these SNPs may be more likely to contribute to the birth defect.^ The second project aim was to analyze genotypes associated with SBMM risk by transmission disequilibrium tests (TDT) and association was detected on several SNPs across the folate metabolic pathway genes in this population. SNPs with significant RC-TDT values were found within the DHFR gene (rs1650723), the MTRR gene (rs327592), the FOLR2 gene (rs13908), four tightly linked variants in the FOLR3 gene (rs7925545, rs7926875, rs7926987, rs7926360) and a variant in the SLC19A1 gene (rs1888530). The product of each of these genes performs a vital function in the folate metabolic pathway. It is conceivable, therefore, that if the individual SNP or SNPs can be proven to perturb the function in some way that they may be involved in the disruption of folate metabolism and in the resulting birth defect. Validating the results of this study in other independent populations will further strengthen the evidence that dysfunction of folate enzymes and receptors may confer SBMM risk in humans. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arsenic trioxide (ATO) is an inorganic arsenic derivative that is very effective against relapsed acute promyelocytic leukemia. It is being investigated as therapy for other cancers, but the risk/benefit ratio is questionable due to significant side effects. In contrast, organic arsenic derivatives (OAD) are known to be much less toxic than ATO. Based on high activity, we selected GMZ27 (dipropil-s-glycerol arsenic) for further study and have confirmed its potent activity against human acute leukemia cell lines. This anti-leukemic activity is significantly higher than that of ATO. Both in vivo and in vitro tests have shown that GMZ27 is significantly less toxic to normal bone marrow mononuclear cells and normal mice. Therefore, further study of the biological activity of GMZ27 was undertaken. ^ GMZ27, in contrast to ATO, can only marginally induce maturation of leukemic cells. GMZ27 has no effect on cell cycle. The anti-leukemic activity of GMZ27 against acute myeolocytic leukemia cells is not dependent upon degradation of PML-RARα fusion protein. GMZ27 causes dissipation of mitochondrial transmembrane potential, cleavage of caspase 9, caspase 3 activation. Further studies indicated that GMZ27 induces intracellular reactive oxygen species (ROS) production, and modification of intracellular ROS levels had profound effect on its potential to inhibit proliferation of leukemic cells. Therefore ROS production plays a major role in the anti-leukemic activity of GMZ27. ^ To identify how GMZ27 induces ROS, our studies focused on mitochondria and NADPH oxidase. The results indicated that the source of ROS generation induced by GMZ27 is dose dependent. At the low dose (0.3 uM) GMZ27 induces NADPH oxidase activity that leads to late ROS production, while at the high dose (2.0 uM) mitochondria function is disrupted and early ROS production is induced leading to dramatic cell apoptosis. Therefore, late, ROS production can be detected in mitochondria are depleted Rho-0 cells. Our work not only delineates a major biologic pathway for the anti-leukemic activity of GMZ27, but also discusses possible ways of enhancing the effect by the co-application of NADPH oxidase activator. Further study of this interaction may lead to achieving better therapeutic index.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibodies (Abs) to autoantigens and foreign antigens (Ags) mediate, respectively, various pathogenic and beneficial effects. Abs express enzyme-like nucleophiles that react covalently with electrophiles. A subpopulation of nucleophilic Abs expresses proteolytic activity, which can inactivate the Ag permanently. This thesis shows how the nucleophilicity can be exploited to inhibit harmful Abs or potentially protect against a virus. ^ Inactivation of pathogenic Abs from Hemophilia A (HA) patients by means of nucleophile-electrophile pairing was studied. Deficient factor VIII (FVIII) in HA subjects impairs blood coagulation. FVIII replacement therapy fails in 20-30% of HA patients due to production of anti-FVIII Abs. FVIII analogs containing electrophilic phosphonate group (E-FVIII and E-C2) were hypothesized to inactivate the Abs by reacting specifically and covalently with nucleophilic sites. Anti-FVIII IgGs from HA patients formed immune complexes with E-FVIII and E-C2 that remained irreversibly associated under conditions that disrupt noncovalent Ab-Ag complexes. The reaction induced irreversible loss of Ab anti-coagulant activity. E-FVIII alone displayed limited interference with coagulation. E-FVIII is a prototype reagent suitable for further development as a selective inactivator of pathogenic anti-FVIII Abs. ^ The beneficial function of Abs to human immunodeficiency virus type 1 (HIV-1) was analyzed. HIV-1 eludes the immune system by rapidly changing its coat protein structure. IgAs from noninfected subjects hydrolyzed gp120 and neutralized HIV-1 with modest potency by recognizing the gp120 421-433 epitope, a conserved B cell superantigenic region that is also essential for HIV-1 attachment to host cell CD4 receptors. An adaptive immune response to superantigens is generally prohibited due to their ability to downregulate B cells. IgAs from subjects with prolonged HIV-1 infection displayed improved catalytic hydrolysis of gp120 and exceptionally potent and broad neutralization of diverse CCR5-dependent primary HIV isolates attributable to recognition of the 421-433 epitope. This indicates that slow immunological bypass of the superantigenic character of gp120 is possible, opening the path to effective HIV vaccination. ^ My research reveals a novel route to inactivate pathogenic nucleophilic Abs using electrophilic antigens. Conversely, naturally occurring nucleophilic Abs may help impede HIV infection, and the Abs could be developed for passive immunotherapy of HIV infected subjects. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth common malignancy in the world, with high rates of developing second primary malignancy (SPM) and moderately low survival rates. This disease has become an enormous challenge in the cancer research and treatments. For HNSCC patients, a highly significant cause of post-treatment mortality and morbidity is the development of SPM. Hence, assessment of predicting the risk for the development of SPM would be very helpful for patients, clinicians and policy makers to estimate the survival of patients with HNSCC. In this study, we built a prognostic model to predict the risk of developing SPM in patients with newly diagnosed HNSCC. The dataset used in this research was obtained from The University of Texas MD Anderson Cancer Center. For the first aim, we used stepwise logistic regression to identify the prognostic factors for the development of SPM. Our final model contained cancer site and overall cancer stage as our risk factors for SPM. The Hosmer-Lemeshow test (p-value= 0.15>0.05) showed the final prognostic model fit the data well. The area under the ROC curve was 0.72 that suggested the discrimination ability of our model was acceptable. The internal validation confirmed the prognostic model was a good fit and the final prognostic model would not over optimistically predict the risk of SPM. This model needs external validation by using large data sample size before it can be generalized to predict SPM risk for other HNSCC patients. For the second aim, we utilized a multistate survival analysis approach to estimate the probability of death for HNSCC patients taking into consideration of the possibility of SPM. Patients without SPM were associated with longer survival. These findings suggest that the development of SPM could be a predictor of survival rates among the patients with HNSCC.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dental caries is the most common chronic disease worldwide. It is characterized by the demineralization of tooth enamel caused by acid produced by cariogenic dental bacteria growing on tooth surfaces, termed bacterial biofilms. Cariogenesis is a complex biological process that is influence by multiple factors and is not attributed to a sole causative agent. Instead, caries is associated with multispecies microbial biofilm communities composed of some bacterial species that directly influence the development of a caries lesion and other species that are seemingly benign but must contribute to the community in an uncharacterized way. Clinical analysis of dental caries and its microbial populations is challenging due to many factors including low sensitivity of clinical measurement tools, variability in saliva chemistry, and variation in the microbiota. Our laboratory has developed an in vitro anaerobic biofilm model for dental carries to facilitate both clinical and basic research-based analyses of the multispecies dynamics and individual factors that contribute to cariogenicity. The rational for development of this system was to improve upon the current models that lack key elements. This model places an emphasis on physiological relevance and ease of maintenance and reproducibility. The uniqueness of the model is based on integrating four critical elements: 1) a biofilm community composed of four distinct and representative species typically associated with dental caries, 2) a semi-defined synthetic growth medium designed to mimic saliva, 3) physiologically relevant biofilm growth substrates, and 4) a novel biofilm reactor device designed to facilitate the maintenance and analysis. Specifically, human tooth sections or hydroxyapatite discs embedded into poly(methyl methacrylate) (PMMA) discs are incubated for an initial 24 hr in a static inverted removable substrate (SIRS) biofilm reactor at 37°C under anaerobic conditions in artificial saliva (CAMM) without sucrose in the presence of 1 X 106 cells/ml of each Actinomyces odontolyticus, Fusobacterium nucleatum, Streptococcus mutans, and Veillonella dispar. During days 2 and 3 the samples are maintained continually in CAMM with various exposures to 0.2% sucrose; all of the discs are transferred into fresh medium every 24 hr. To validate that this model is an appropriate in vitro representation of a caries-associated multispecies biofilm, research aims were designed to test the following overarching hypothesis: an in vitro anaerobic biofilm composed of four species (S. mutans, V. dispar, A. odontolyticus, and F. nucleatum) will form a stable biofilm with a community profile that changes in response to environmental conditions and exhibits a cariogenic potential. For these experiments the biofilms as described above were exposed on days 2 and 3 to either CAMM lacking sucrose (no sucrose), CAMM with 0.2% sucrose (constant sucrose), or were transferred twice a day for 1 hr each time into 0.2% sucrose (intermittent sucrose). Four types of analysis were performed: 1) fluorescence microscopy of biofilms stained with Syto 9 and hexidium idodine to determine the biofilm architecture, 2) quantitative PCR (qPCR) to determine the cell number of each species per cm2, 3) vertical scanning interferometry (VSI) to determine the cariogenic potential of the biofilms, and 4) tomographic pH imaging using radiometric fluorescence microscopy after exposure to pH sensitive nanoparticles to measure the micro-environmental pH. The qualitative and quantitative results reveal the expected dynamics of the community profile when exposed to different sucrose conditions and the cariogenic potential of this in vitro four-species anaerobic biofilm model, thus confirming its usefulness for future analysis of primary and secondary dental caries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanisms of multidrug resistance (MDR) were studied in two independent MDR sublines (AdR1.2 and SRA1.2) derived from the established human colon carcinoma cell line LoVo. AdR1.2 was developed by long-term continuous exposure of the cells to adriamycin (AdR) in stepwise increments of concentration, while SRA1.2 was selected by repetitive pulse treatments with AdR at a single concentration. In this dissertation, the hypothesis that the mechanism of drug resistance in SRA1.2 is different than that in AdR1.2 is tested. While SRA1.2 demonstrated similar biological characteristics when compared to the parental LoVo, AdR1.2 exhibited remarkable alterations in biological properties. The resistance phenotype of AdR1.2 was reversible when the cells were grown in the drug-free medium whereas SRA1.2 maintained its resistance for at least 10 months under similar conditions. Km and Vmax of carrier-mediated facilitated diffusion AdR transport were similar among the three lines. However, both resistant sublines exhibited an energy-dependent drug efflux. AdR1.2 appeared to possess an activated efflux pump, and a decreased nucleus-binding of AdR, whereas SRA1.2 showed merely a lower affinity in binding of AdR to the nuclei. Southern blot analysis showed no amplification of the MDR1 gene in either of the two resistant subclones. However, Western blot analysis using the C219 monoclonal antibody against P170 glycoprotein detected a Mr 150-kDa plasma protein (P150) in AdR1.2 but not in SRA1.2 or in the parental LoVo. In vitro phosphorylation studies revealed that P150 was a phosphoprotein; its phosphorylation was Mg$\sp{2+}$-dependent and could be enhanced by verapamil, an agent capable of increasing intracellular AdR accumulation in AdR1.2 cells. The phosphorylation studies also revealed elevated phosphorylation of a Mr 66-kDa plasma membrane protein that was detectable in the AdR1.2 revertant and in AdR1.2 when verapamil was present, suggesting that hyperphosphorylation of the Mr 66-kDa protein may be related to the reversal of MDR. SDS-PAGE of the plasma membrane protein demonstrated overproduction of a Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa protein was not immunoreactive with C219, but its absence in the AdR1.2 revertant and the parental LoVo suggests that it is an MDR-related plasma membrane protein. In conclusion, the results from this study support the author's hypothesis that the mechanisms responsible for "Acquired" and "Natural" MDR are not identical. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the p53 tumor suppressor gene are found in over 50% of human tumors and in the germline of Li-Fraumeni syndrome families. About 80% of these mutations are missense in nature. In order to study how p53 missense mutations affect tumorigenesis in vivo, we focused on the murine p53 arg-to-his mutation at amino acid 172, which corresponds to the human hot spot mutation at amino acid 175. The double replacement procedure was employed to introduce the p53 R172H mutation into the p53 locus of ES cells and mice were generated. An additional 1bp deletion in the intron 2 splice acceptor site was detected in the same allele in mice. We named this allele p53R172HΔg. This allele makes a small amount of full length p53 mutant protein. ^ Spontaneous tumor formation and survival were studied in these mice. Mice heterozygous for the p53R172HΔg allele showed 50% survival at 17 months of age, similar to the p53+/− mice. Moreover, the p53R172HΔg/+ mice showed a distinct tumor spectrum: 55% sarcomas, including osteosarcoms, fibrosarcomas and angiosarcomas; 27% carcinomas, including lung adenocarcinomas, squamous cell carcinomas, hepatocellular carcinomas and islet cell carcinomas; and 18% lymphomas. Compared to the p53+/− mice, there was a clear increase in the frequency of carcinoma development and a decrease in lymphoma incidence. Among the sarcomas that developed, fibrosarcomas in the skin were also more frequently observed. More importantly, osteosarcomas and carinomas that developed in the p53R172HΔg/+ mice metastasized at very high frequency (64% and 67%, respectively) compared with less than 10% in the p53+/− mice. The metastatic lesions were usually found in lung and liver, and less frequently in other tissues. The altered tumor spectrum in the mice and increased metastatic potential of the tumors suggested that the p53R172H mutation represents a gain-of-function. ^ Mouse embryonic fibroblasts (MEFs) from the mice homozygous and heterozygous for the p53R172HΔg allele were studied for growth characteristics, immortalization potential and genomic instability. All of the p53R172HΔg /+ MEF lines are immortalized under a 3T3 protocol while under the same protocol p53+/− MEFs are not immortalized. Karyotype analysis showed a persistent appearance of chromosome end-to-end fusion in the MEFs both homozygous and heterozygous for the p53R172HΔg allele. These observations suggest that increased genomic instability in the cells may cause the altered tumor phenotypes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, is a facultative intracellular pathogen that uses the host mononuclear phagocyte as a niche for survival and replication during infection. Complement component C3 has previously been shown to enhance the binding of M. tuberculosis to mononuclear phagocytes. Using a C3 ligand affinity blot protocol, we identified a 30 kDa C3-binding protein in M. tuberculosis as heparin-binding hemagglutinin (HbhA). HbhA was found to be a hydrophobic protein that localized to the cell membrane/cell wall fraction of M. tuberculosis, and this protein has previously been shown by others to be located on the surface of M. tuberculosis. The C3-binding activity of HbhA was localized to the C-terminus of the protein, which consists of lysine-alanine repeats. Full-length recombinant HbhA coated onto latex beads was shown to mediate the adherence of the beads to murine macrophage-like cells in both a C3-dependent and a C3-independent manner. An in-frame 576 by deletion in the hbhA gene was created in a virulent strain of M. tuberculosis using a PCR technique known as gene splicing by overlap extension (SOEing). Using the ΔhbhA mutant, HbhA was found not to be necessary for growth of M. tuberculosis in laboratory media or in macrophage-like cells, nor is HbhA required for adherence of M. tuberculosis to macrophage-like cells. HbhA is, however, required for infectivity of M. tuberculosis in mice. Mice infected with the ΔhbhA mutant show decreased growth in the lungs, liver, and spleen compared to mice infected with the wild-type strain. Using the ΔhbhA mutant strain, we were able to purify and identify a second 30-kDa C3-binding protein, HupB. These data demonstrate that HbhA is required for the in vivo but not the in vitro survival of M. tuberculosis and that HbhA is not necessary for the adherence of M. tuberculosis to the macrophage-like cells used in these studies. The expression of two proteins that bind human C3 may aid in the efficient binding of M. tuberculosis to complement receptors for uptake into mononuclear cells, or may influence other aspects of the host-parasite interaction. ^