483 resultados para Biology, Molecular|Biology, Genetics|Health Sciences, Ophthalmology
Resumo:
The adenovirus type 5 E1A (abbreviated E1A) has previously been known as an immortalization oncogene because E1A is required for transforming oncogenes, such as ras and E1B, to transform cells in primary cultures. However, E1A has also been shown to downregulate the overexpression of the Her-2/neu oncogene, resulting in suppression of transformation and tumorigenesis induced by that oncogene. In addition, E1A is able to promote apoptosis induced by anticancer drugs, irradiation, and serum deprivation. Many tyrosine kinases, such as the EGF receptor, Her-2/Neu, Src, and Axl are known to play a role in oncogenic signals in transformed cells. To study the mechanism underlying the E1A-mediated tumor-suppressing function, we exploited a modified tyrosine kinase profile assay (Proc. Natl. Acad. Sci, 93, 5958–5962, 1996) to identify potential tyrosine kinases regulated by E1A. RT-PCR products were synthesized with two degenerate primers derived from the conserved motifs of various tyrosine kinases. A tyrosine kinase downregulated by E1A was identified as Axl by analyzing the Alu I-digested RT-PCR products. We isolated the DNA fragment of interest, and found that E1A negatively regulated the expression of the transforming receptor tyrosine kinase Axl at the transcriptional level. To study whether downregulation of the Axl receptor is involved in E1A-mediated growth suppression, we transfected axl cDNA into E1A-expressing cells (ip1-E1A) to establish cells that overexpressed Axl (ip1-E1A-Axl). The Axl ligand Gas6 triggered a greater mitogenic effect in these ip1-E1A-Axl cells than in the control cells ip1-E1A and protected the Axl-expressing cells from serum deprivation-induced apoptosis. Further study showed that Akt is required for Axl-Gas6 signaling to prevent ip1-E1A-Axl cells from serum deprivation-induced apoptosis. These results indicate that downregulation of the Axl receptor by E1A is involved in E1A-mediated growth suppression and E1A-induced apoptosis, and thereby contributes to E1A's anti-tumor activities. ^
Resumo:
Overexpression of c-erbB-2 gene-encoded p185 has been correlated with lymph node metastasis and poor prognosis in breast cancer patients. To investigate whether overexpression of c-erbB-2 can enhance metastatic potential of human breast cancer cells, we compared the metastatic phenotypes of the parental MDA-MB-435 cells and the c-erbB-2 gene transfected 435.eB cells. In vivo experimental metastasis assays demonstrated that mice injected erbB2-overexpressing 435.eB transfectants formed significantly more metastatic tumors than the mice injected with parental and control cells. The changes in metastatic potential in vivo were accompanied by increased invasiveness in vitro . The transfectants and the parental cells all had similar growth rates and transformation potential. These findings suggest that c- erbB-2 gene can enhance the intrinsic metastatic potentials of MDA-MB-435 cells without increasing their transformation abilities. ^ Homophilic adhesion may affect invasive and metastatic potential of tumor cells. We found that Heregulin-β1 (HRG-β1), a growth factor that activates receptor kinases erbB3 and erbB4, can enhance aggregation of MCF-7 and SKBR3 human breast cancer cells. While investigating the downstream signals involved in HRG-β1-increased cell aggregation, we observed that HRG-β1 increased the kinase activities of extracellular signal-regulated protein kinase (ERK) and PI3K in these cells. By using different kinase inhibitors, we found that the HRG-β1-activated MEK1-ERK pathway has no demonstrable role in the induction of cell aggregation, whereas HRG-β1-activated PI3K is required for enhancing breast cancer cell aggregation. These results have provided one mechanism by which HRG-β1-activated signaling of erbB receptors may affect invasive/metastatic properties of breast cancer cells. ^ To identify the structural motifs within the erbB2 receptor that are required for erbB2 increased metastatic potential in breast cancer cells, we injected different forms of mutated erbB2 expressing MDA-MB-435 cell line transfectants with or without the EGF-like domain of heregulin-β1 protein (HRG/egf) into ICR-SCID mice to test the metastatic survival rate. The results show that an intact kinase domain of erbB2 receptor is required for erbB2 enhanced metastatic potential in these cells. The C-terminal tyrosine 1248 residue of erbB2 may also play a role in enhancing metastatic potential. Moreover, the results suggest that HRG/egf promote the metastatic potential of human breast cancer cells in vivo. ^
Resumo:
DNA-directed nucleoside analogues, such as ara-C, fludarabine, and gemcitabine, are antimetabolites effective in the treatment of a variety of cancers. However, resistance to nucleoside analogue-based chemotherapy in treatments is still a major problem in therapy. Therefore, it is essential to develop rationales for optimizing the use of nucleoside analogues in combination with other anticancer drugs or modalities such as radiation. The present study focuses on establishing mechanism-based combination strategy to overcome resistance to nucleoside analogues. ^ I hypothesized that the cytostatic concentrations of nucleoside analogues may cause S-phase arrest by activating an S-phase checkpoint that consists of a series of kinases. This may allow cells to repair damaged DNA over time and spare cytotoxicity. Thus, the ability of cells to enact an S-phase arrest in response to incorporation of potentially lethal amounts of nucleoside analogue may serve as a mechanism of resistance to S-phase-specific agents. As a corollary, the addition of a kinase inhibitor, such as UCN-01, may dysregulate the checkpoint response and abrogate the survival of S-phase-arrested cells by suppression of the survival signaling pathways. Using gemcitabine as a model of S-phase-specific nucleoside analogues in human acute myelogenous leukemia ML-1 cells, I demonstrated that cells arrested in S-phase in response to cytostatic conditions. Proliferation continued after washing the cells into drug-free medium, suggesting S-phase arrest served as a resistance mechanism of cancer cells to spare cytotoxicity of nucleoside analogues. However, nontoxic concentrations of UCN-01 rapidly killed S-phase-arrested cells by apoptosis. Furthermore, the molecular mechanism for UCN-01-induced apoptosis in S-phase-arrested cells was through inhibition of survival pathways associated with these cells. In this regard, suppression of the PI 3-kinase-Akt-Bad survival pathway as well as the NF-κB signaling pathway were associated with induction of apoptosis in S-phase-arrested cells by UCN-01, whereas the Ras-Raf-MEK-ERK pathway appeared not involved. This study has provided the rationales and strategies for optimizing the design of effective combination therapies to overcome resistance to nucleoside analogues. In fact, a clinical trial of the combination of ara-C with UCN-01 to treat relapsed or refractory AML patients has been initiated at U.T.M.D. Anderson Cancer Center. ^
Resumo:
Investigations into the molecular basis of glioblastoma multiforme led to the identification of a putative tumor suppressor gene, MMAC/ PTEN. Initial studies implicated MMAC/PTEN in many different tumor types, and identified a protein phosphatase motif in its sequence. This project aimed to identify the biological and biochemical functions of MMAC/PTEN by transiently expressing the gene in cancer cells that lack a functional gene product. ^ Expression of MMAC/PTEN mildly suppressed the growth of U251 human glioma cells and abrogated the growth advantage mediated by overexpression of the epidermal growth factor receptor (EGFR). Immunoblotting demonstrated that MMAC/PTEN expression did not affect the phosphorylation of the EGFR itself, or the intermediates of several downstream signaling pathways. However, MMAC/PTEN expression significantly reduced the phosphorylation and catalytic activity of the proto-oncogene Akt/PKB. While Akt/PKB regulates the survival of many cell types, expression of MMAC/PTEN did not induce apoptosis in adherent U251 cells. Instead, MMAC/PTEN expression sensitized the cells to apoptosis when maintained in suspension (anoikis). As the survival of suspended cells is one of the hallmarks leading to metastasis, MMAC/PTEN expression was examined in a system in which metastasis is more clinically relevant, prostate cancer. ^ Expression of MMAC/PTEN in both LNCaP and PC3-P human prostate cancer cells specifically inhibited Akt/PKB phosphorylation. MMAC/PTEN expression in LNCaP cells resulted in a profound inhibition of growth that was significantly greater than that achieved with expression of p53. Expression of MMAC/PTEN in PC3-P cells resulted in greater growth inhibition than was observed in U251 glioma cells, but less than was observed in LNCaP cells, or upon p53 expression. To determine if MMAC/PTEN could function as a tumor suppressor in vivo, the effects of MMAC/PTEN expression on PC3-P cells implanted orthotopically in nude mice were examined. The ex-vivo expression of MMAC/PTEN did not decrease tumor incidence, but it did significantly decrease tumor size and metastasis. In-vivo expression of MMAC/PTEN in pre-established PC3-P tumors did not significantly inhibit tumor incidence or size, but did inhibit metastasis formation. ^ These studies demonstrate that MMAC/PTEN is a novel and important tumor suppressor gene, which functions to downregulate an important cell survival signaling pathway. ^
Resumo:
We investigated the induction and physiological role of Thr18 and Ser20 phosphorylation of p53 in response to DNA damage caused by treatment with ionizing (IR) or ultraviolet (UV) radiation. Polyclonal antibodies specifically recognizing phospho-Thr18 and phospho-Ser20 were used to detect p53 phosphorylation in vivo. Analyses of five wild-type (wt) p53 containing cell lines revealed lineage specific differences in phosphorylation of Thr18 and Ser20 after treatment with IR or UV. Importantly, the phosphorylation of p53 at Thr18 and Ser20 correlated with induction of the p53 downstream targets p21Waf1/Cip1 (p21) and Mdm-2, suggesting a transactivation enhancing role for Thr18 and Ser20 phosphorylation. Whereas Thr18 phosphorylation appears to abolish side-chain hydrogen bonding between Thr18 and Asp21, Ser20 phosphorylation may introduce charge attraction between Ser20 and Lys24. Both of these interactions could contribute to stabilizing α-helical conformation within the p53 transactivation domain. Mutagenesis-derived phosphorylation mimicry of p53 at Thr18 and Ser20 by Asp substitution (p53T18D/S20D) altered transactivation domain conformation and significantly reduced the interaction of p53 with the transactivation repressor Mdm-2. Mdm-2 interaction was also reduced with p53 containing a single site Asp substitution at Ser20 (p53S20D) and with the Thr18/Asp21 hydrogen bond disrupting p53 mutants p53T18A, p53T18D and p53D21A. In contrast, no direct effect was observed on the interaction of p53T18A, p53T18D and p53D21A with the basal transcription factor TAF II31. However, prior incubation of p53T18A, p53T18D and p53D21A with Mdm-2 modulated TAFII31 interaction, suggesting Mdm-2 blocks the accessibility of p53 to TAFII31. Consistently, p53-null cells transfected with p53S20D and p53T18A, p53T18D and p53D21A demonstrated enhanced endogenous p21 expression; transfection with p53T18D/S20D most significantly enhanced p21 and fas/APO-1 (fas ) expression. Expression of p53T18A, p53T18D and p53D21A in p53/Mdm-2-double null cells exhibited no discernible differences in p21 expression. Cell proliferation was also significantly curtailed in p53-null cells transfected with p53T18D/S20D relative to cells transfected with wt p53. We conclude the irradiation-induced phosphorylation of p53 at Thr18 and Ser20 alters the α-helical conformation of its transactivation domain. Altered conformation reduces direct interaction with the transrepressor Mdm-2, enhancing indirect recruitment of the basal transcription factor TAFII31, facilitating sequence-specific transactivation function resulting in proliferative arrest. ^
Resumo:
c-Met is the protein tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF) and mediates several normal cellular functions including proliferation, survival, and migration. Overexpression of c-Met correlates with progression and metastasis of human colorectal carcinoma (CRC). The goals of this study were to determine if overexpression of c-Met directly contributes to tumorigenicity and liver metastatic potential of colon cancer, and what are the critical pathways regulated by c-Met in this process. The studies used two colon tumor cell lines, KM12SM and KM20, which express high levels of constitutively active c-Met and are highly metastatic in nude mice. To examine the effects of c-Met overexpression, subclones of theses lines with reduced c-Met expression were obtained following transfection with a c-Met specific targeting ribozyme. Reduction of c-Met in KM12SM cells abolished liver metastases when cells were injected intrasplenically in an experimental metastasis assay. However, c-Met downregulation in theses clones was unstable. Three stable KM20 clones with a 25–35% reduction in c-Met protein levels but 60–90% reduction in basal c-Met autophosphorylation and kinase activity were obtained. While HGF increased c-Met kinase activity in the clones with reduced c-Met, the activity was less than that observed in parental or control transfected cells. Correlating with the reduction in c-Met kinase activity, subclones with reduced c-Met expression had significantly reduced in vitro growth rates, soft-agar colony forming abilities, and increased apoptosis. HGF/SF treatment did not affect anchorage-dependent growth or soft-agar colony forming abilities. Further, c-Met downregulation significantly impaired the ability of HGF/SF to induce migration. To examine the effects of reduced c-Met on tumor formation, parental and c-Met reduced KM20 cells were grown subcutaneously and intrahepatically in nude mice. c-Met downregulation delayed, but did not abolish growth at the subcutaneous site. When these cells were injected intrahepatically, both tumor incidences and size were significantly reduced. To further understand the molecular basis of c-Met in promoting tumor growth, the activation of several signaling intermediates that have been implicated in c-Met mediated growth, survival and migration were compared between KM20 parental cells and subclones with reduced c-Met expression levels. The expression and activity (as determined by phosphorylation) of AKT and Erk1/2 were unaltered. In contrast, Src kinase activity, as measured by immune complex kinase assay, was reduced 2–5 fold following c-Met downregulation. As Src has been implicated in growth, survival and migration, Src activation in c-Met overexpressing lines is likely contributing to the tumorigenic and metastatic capabilities of colon tumor cell lines that overexpress c-Met. Collectively, these results suggest that c-Met overexpression plays a causal role in the development of CRC liver metastases, and that c-Src and c-Met inhibitors may be of potential therapeutic benefit for late-stage colon cancer. ^
Resumo:
The human glutathione S-transferase P1 (GSTP1) protein is an endogenous inhibitor of c-jun N-terminal kinases (JNKs) and an important phase II detoxification enzyme. ^ Recent identification of a cAMP response element (CRE) in the 5 ′-region of the human GSTP1 gene and several putative phosphorylation sites for the Ser/Thr protein kinases, including, cAMP-dependent protein kinases (PKAs), protein kinases C (PKCs), and JNKs in the GSTP1 protein raised the possibility that signaling pathways may play an important role in the transcriptional and post-translational regulation of GSTP1 gene. This study examined (a) whether the signaling pathway mediated by CAMP, via the GSTP1 CRE, is involved in the transcriptional regulation of the GSTP1 gene, (b) whether signaling pathways mediated by the Ser/Thr protein kinases (PKAs, PKCs, and JNKs) induce post-translational modification, viz. phosphorylation of the GSTP1 protein, and (c) whether such phosphorylation of the GSTP1 protein alters its functions in metabolism and in JNK signaling. ^ The first major finding in this study is the establishment of the human GSTP1 gene as a novel CAMP responsive gene in which transcription is activated via an interaction between PKA activated CRE binding protein-1 (CREB-1) and the CRE in the 5′-regulatory region. ^ The second major finding in this study is the observation that the GSTP1 protein undergoes phosphorylation and functionally activated by second messenger-activated protein kinases, PKA and PKC, in tumor cells with activated signaling pathways. Following phosphorylation by PKA or PKC, the catalytic activity of the GSTP1 protein was significantly enhanced, as indicated by a decrease in its Km (2- to 3.6-fold) and an increase in Kcat/ Km (1.6- to 2.5-fold) for glutathione. Given the frequent over-expression of GSTP1 and the aberrant PKA/PKC signaling cascade observed in tumors, these findings suggest that phosphorylation of GSTP1 may contribute to the malignant progression and drug-resistant phenotype of these tumors. ^ The third major finding in this study is that the GSTP1 protein, an inhibitor of JNKs, undergoes significant phosphorylation in tumor cells with activated JNK signaling pathway and in those under oxidative stress. Following phosphorylation by JNK, the ability of GSTP1 to inhibit JNK downstream function, i.e. c-jun phosphorylation, was significantly enhanced, suggesting a feedback mechanism of regulation of JNK-mediated cellular signaling. (Abstract shortened by UMI.) ^
Resumo:
Non-Hodgkin's lymphomas are common tumors of the human immune system, primarily of B cell lineage (NHL-B). Negative growth regulation in the B cell lineage is mediated primarily through the TGF-β/SMAD signaling pathway that regulates a variety of tumor suppressor genes. Ski was originally identified as a transforming oncoprotein, whereas SnoN is an isoform of the Sno protein that shares a large region of homology with Ski. In this study, we show that Ski/SnoN are endogenously over-expressed both in patients' lymphoma cells and NHL-B cell lines. Exogenous TGF-β1 treatment induces down-regulation of Ski and SnoN oncoprotein expression in an NHL-B cell line, implying that Ski and SnoN modulate the TGF-β signaling pathway and are involved in cell growth regulation. Furthermore, we have developed an NHL-B cell line (DB) that has a null mutation in TGF-β receptor type II. In this mutant cell line, Ski/SnoN proteins are not down-regulated in response to TGF-β1 treatment, suggesting that downregulation of Ski and SnoN proteins in NHL-B require an intact functional TGF-β signaling pathway Resting normal B cells do not express Ski until activated by antigens and exogenous cytokines, whereas a low level of SnoN is also present in peripheral blood Go B cells. In contrast, autonomously growing NHL-B cells over-express Ski and SnoN, implying that Ski and SnoN are important cell cycle regulators. To further investigate a possible link between reduction of the Ski protein level and growth inhibition, Ski antisense oligodeoxynucleotides were transfected into NHL-B cells. The Ski protein level was found to decrease to less than 40%, resulting in restoring the effect of TGF-β and leading to cell growth inhibition and G1 cell cycle arrest. Co-immunoprecipitation experiments demonstrated that Ski associates with Smad4 in the nucleus, strongly suggesting that over-expression of the nuclear protein Ski and/or SnoN negatively regulates the TGF-β pathway, possibly by modulating Smad-mediated tumor suppressor gene expression. Together, in NHL-B, the TGF-β/SMAD growth inhibitory pathway is usually intact, but over-expression of the Ski and/or SnoN, which binds to Smad4, abrogates the negative regulatory effects of TGF-β/SMAD in lymphoma cell growth and potentiates the growth potential of neoplastic B cells. ^
Resumo:
Philadelphia chromosome (Ph)-positive chronic myeloid leukemia is caused by a clonal myeloproliferative expansion of malignant primitive hematopoietic progenitor cells. The Ph results from the reciprocal translocation of the ends of chromosome 9 and 22, which generate Bcr-Abl fusion proteins. The Bcr-Abl proteins possess a constitutively activated Abl tyrosine kinase, which is the driving force responsible for causing leukemia. The activated Bcr-Abl tyrosine kinase stimulates multiple signal transduction pathway affecting growth, differentiation and survival of cells. It is known that the Bcr-Abl tyrosine kinase activates several signaling proteins including Stat5, which is a member of the Jak/Stat pathway that is activated by cytokines that control the growth and differentiation of normal hematopoietic cells. Our laboratory was the first one to report that Jak2 tyrosine kinase is activated in a human Bcr-Abl positive hematopoietic cell line. In this thesis, we further investigated the activation of Jak2 by Bcr-Abl. We found that Jak2 is activated not only in cultured Bcr-abl positive cell lines but also in blood cells from CML blast crisis patients. We also demonstrated that SH2 domain of Bcr-Abl is required for efficient activation Jak2. We further showed that Jak2 binds to the C-terminal domain of Bcr-Abl; tyrosine residue 1007, which is critical for Jak2 activation, is phosphorylated by Bcr-Abl. We searched downstream targets of Jak2 in Bcr-Abl positive cells. We treated Bcr-Abl positive cells with a Jak2 kinase inhibitor AG490 and found that c-Myc protein expression is inhibited by AG490. We further demonstrated that Jak2 inhibitor AG490 not only inhibit C-MYC transcription but also protect c-Myc protein from proteasome-dependent degradation. We also showed that AG490 did not affect Bcr-Abl kinase activity and Stat5 activation and its downstream target Bcl-xL expression. AG490 also induced apoptosis of Bcr-Abl positive cells, similar to Bcr-Abl kinase inhibitor STI571 (also termed Gliveec, a very effective drug for CML), but unlike STI571 the apoptosis effects induced by AG490 can not be rescued by IL-3 containing WEHI conditioned medium. We further established several Bcr-Abl positive clones that express a kinase-inactive Jak2 and found that these clones had reduced tumor formation in nude mice assays. Taken together, these results establish that Jak2 is activated in Bcr-Abl positive CML cells and it is required for c-Myc induction and the oncogenic effects of Bcr-Abl. Furthermore, Jak2 and Stat5 are two independent targets of Bcr-Abl. ^
Resumo:
Borrelia burgdorferi, a spirochete and the causative agent of Lyme disease, infects both mammals and ticks. Its genome, sequenced in 1997, consists of one linear chromosome and over 20 linear and circular plasmids. Continuous passage of organisms in culture causes them to lose certain plasmids and also results in loss of infectivity in mammals. In this work, 19 B. burgdorferi clonal isolates were examined for infectivity in mice and for plasmid content utilizing polymerase chain reaction (PCR). Two plasmids, a 28 kilobase (kb) linear plasmid (Ip28-1) and a 25 kb linear plasmid (Ip25) were found to be required for full infectivity. Previous studies had demonstrated that Ip28-1 contains the vls locus, which is involved in antigenic variation and immune evasion. Gene BBE22 on Ip25 is predicted to encode the nicotinamidase PncA, an enzyme that converts nicotinamide to nicotinic acid as part of a pathway for NAD synthesis. To examine the potential role of BBE22 in infectivity, a shuttle vector containing BBE22 (pBBE22) was constructed and used to transform B. burgdorferi clone 5A13, which contains all plasmids except lp25. Transformation with pBBE22 restored infectivity of clone 5A13 in mice, whereas 5A13 transformed with the shuttle vector alone was not infectious. To determine whether BBE22 acts as a nicotinamidase in vivo, a Salmonella typhimurium pncA− nadB− transposon mutant was transformed with pBBE22 or with pQE30:BBE22, which contained BBE22 in an E. coli expression vector. Both constructs complemented the Salmonella mutant, permitting growth in minimal media plus nicotinamide. Salmonella cells over-expressing BBE22 also exhibited nicotinamidase activity, as determined by ammonia production in the presence of nicotinamide. Site-directed mutagenesis of BBE22 at the predicted active site (resulting in a Cys120Ala substitution) abrogated the ability to restore infectivity to B. burgdorferi 5A13 and to complement the pncA mutation in S. typhimurium. These studies indicate that BBE22 is a nicotinamidase required for NAD synthesis and survival of B. burgdorferi in mammals. This is also the first demonstration of ‘molecular Koch's postulates’ in B. burgdorferi, i.e. that a specific gene is essential for infectivity of the Lyme disease spirochete. ^
Resumo:
Ras proteins (H-, N-, K4A-, and K4B) are associated with cellular resistance to ionizing radiation (IR) and, consequently, may provide a potential target for radiosensitization strategies in cancer treatment. Several approaches have been used to compromise Ras activity and enhance IR-induced cell killing; however, these techniques either target proteins in addition to Ras or only target one member of the Ras family. In this study, I have used an adenovirus (AV1Y28) that expresses a single-chain antibody fragment directed against Ras proteins to investigate the mechanism(s) responsible for Ras-mediated radiation resistance. AV1Y28 enhanced the radiosensitivity of a number of human tumor cell lines without affecting the radiosensitivity of normal human fibroblasts. Whereas AV1Y28-mediated sensitization was independent of ras gene mutational status, it was dependent on active Ras proteins suggesting that AV1Y28 may be useful against a broad range of tumors. AV1Y28-mediated cell killing was not the result of redistributing cells into a more radiosensitive phase of the cell cycle and did not enhance IR-induced apoptosis. Given that Ras proteins transduce environmental signals to the nucleus, the effect of AV1Y28 on the IR-inducible transcription factor NF-κB were determined. Although AV1Y28 inhibited IR-induced NF-κB through the suppression of IKK, additional work established that NF-κB did not play a role in AV1Y28-mediated radiosensitization. However, a novel component of the signaling pathway responsible for IR-induced NF-κB was identified. Previous studies had suggested a relationship between mutant ras genes and IR-induced G2 delay; therefore the effects of AV1Y28 on the progression of cells from G2 to M after IR were determined. Pretreatment of cells with AV1Y28 prevented the IR-induced G2 arrest. AV1Y28-mediated abrogation of IR-induced G2 arrest correlated with those cell line lines that were sensitized by AV1Y28. Moreover, a significant increase in cells undergoing mitotic catastrophe was found after IR in AV1Y28 treated cells. The abrogation of G2 arrest by AV1Y28 was the result of maintaining the active form of cdc2, an inducer of mitosis, after exposure to IR. This study identified the mechanism of AV1Y28-mediated radiosensitization and has provided insight into the signal transduction pathways responsible for Ras-mediated radiation resistance. ^
Resumo:
The aberrant activation of signal transduction pathways has long been linked to uncontrolled cell proliferation and the development of cancer. The activity of one such signaling module, the Mitogen-Activated Protein Kinase (MAPK) pathway, has been implicated in several cancer types including pancreatic, breast, colon, and lymphoid malignancies. Interestingly, the activation of MAP-Kinase-Kinase-Kinase proteins often leads to the additional activation of NF-κB, a transcription factor that acts as a cell survival signal through its control of antiapoptotic genes. We have investigated the role of a specific dimer form of the NF-κB transcription factor family, NF-κB1 (p50) homodimers, in its control of the proto-oncogene, Bcl-2, and we have identified the MEK/ERK (MAPK) signaling cascade as a mediator of NF-κB1 activity. ^ Two murine B cell lymphoma cell lines were used for these studies: LY-as, an apoptosis proficient line with low Bcl-2 protein expression and no nuclear NF-κB activity, and LY-ar, a nonapoptotic line with constitutive p50 homodimer activity and 30 times more Bcl-2 protein expression than LY-as. Experiments modulating p50 activity correlated the activation of p50 homodimers with Bcl-2 expression and additional gel shift experiments demonstrated that the Bcl-2 P1 promoter had NF-κB sites with which recombinant p50 was able to interact. In vitro transcription revealed that p50 enhanced the production of transcripts derived from the Bcl-2 P1 promoter. These data strongly suggest that Bcl-2 is a target gene for p50-mediated transcription and suggest that the activation of p50 homodimers contributes to the expression of Bcl-2 observed in LY-ar cells. ^ Studies of upstream MAPK pathways that could influence NF-κB activity demonstrated that LY-ar cells had phosphorylated ERK proteins while LY-as cells did not. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK, a reversal of nuclear p50 homodimer DNA binding, and a decrease in the amount of Bcl-2 protein expression. Similarly, the activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with TNFα, an IKK activator, did not change the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an IKK-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. ^ These data indicate that the activation of the MEK/ERK MAP-Kinase signaling pathway acts upstream of p50 homodimer activation and Bcl-2 expression in this B cell lymphoma cell system and suggest that the activation of MEK/ERK may be a key step in the progression of lymphoma to advanced-staged disease. Other researchers have used MEK inhibitors to inhibit cell growth and sensitize a number of tumors to chemotherapies. In light of our data, MEK inhibitors may additionally be useful clinically to radiosensitize cancers of lymphoid origin. ^
Resumo:
YKL-40 is a secreted glycoprotein that has been reported to be expressed in pathologic conditions of extracellular matrix degradation and angiogenesis, such as rheumatoid arthritis, severe osteoarthritis, primary colorectal cancer, metastatic breast cancer, and recurrent ovarian cancer (Dehn, Hogdall et al. 2003). ^ We have identified YKL-40 as a serum marker for glioblastoma multiforme (GBM) using microarray analysis from samples of GBM. We compared the gene expression profile of 19 gliomas to pooled normal brain tissue using the Incyte 10,000 gene expression array. The most differentially expressed gene in this analysis was YKL-40; it was detected in GBM samples with a range of 3 to 62-fold elevation over normal brain. Western blot analysis of glioma samples for YKL-40 protein levels revealed substantial elevation in approximately 65% of GBMs, and undetectable levels in lower-grade gliomas and normal brain tissue. ELISA analysis on serum samples of glioma patients showed that YKL-40 levels were substantially elevated in many of the GBM patients. Statistical analysis indicated that in patients with glioma, serum YKL-40 levels correlate with tumor grade and potentially tumor burden in GBM. ^ Furthermore, we found that YKL-40 expression by in-situ hybridization on a brain tumor tissue array was limited to GBM's and gliosarcomas (GSA), and that YKL-40 expression was specific to the GBM component of GSA. Additional in-situ hybridization analysis, found it to be regionally associated with tumor vasculature as well as activated AKT expression in both human and mouse GBM's. Correlation of elevated YKL-40 with phospho-AKT was confirmed by Western blot analysis on a series of glioblastoma tumors, and inhibition of PI3 Kinase signaling by addition of LY294002 also decreased secretion of YKL-40 over a 7-day period in U87 glioblastoma cell tine. Lastly, YKL-40 expression was induced in response to serum starvation and altered by interaction with specific extracellular matrix (ECM) modules. In summary, we have identified the first accurate serum marker for high-grade gliomas. Furthermore, our findings indicate that YKL-40 is a highly expressed vascular-related glycoprotein in human GBM tissue and that it is affected by the AKT signaling pathway and interaction with components of brain ECM proteins. ^
Resumo:
The Houston Academy of Medicine--Texas Medical Center (HAM--TMC) Library collected data on friends of the library groups from 103 health sciences libraries, using a mail questionnaire. Sixteen of the responding libraries had independent friends groups; seven had friends groups that were subordinate to a university group. The sixteen independent groups gave as their major purposes (1) to raise money for their associated library and (2) to develop support for their library. These groups contributed an average of $4,870 a year to their libraries, the money being used primarily to purchase rare books and working-collection books and to sponsor social events. The subordinate groups contributed relatively little money to the health sciences libraries responding to the survey.
Resumo:
Introduction: Concerns about the quality of physician education have changed current medical education practices. Learners must demonstrate competency in core areas, rather than solely participating in educational activities. Academic medical institutions are challenged with identifying leaders to direct curricular and evaluation reforms. An innovative partnership between the University of Houston College of Education and Baylor College of Medicine, the University of Texas Medical School at Houston, and the University of Texas Dental Branch at Houston offers a Masters of Education in Teaching degree with an emphasis in Health Sciences. Courses encompass fundamental areas including curriculum, instruction, technology, measurement, research design and statistics. [See PDF for complete abstract]