139 resultados para Biology, Genetics|Biology, Microbiology
Resumo:
Agrobacterium tumefaciens uses the VirB/D4 type IV secretion system (T4SS) to translocate oncogenic DNA (T-DNA) and protein substrates to plant cells. Independent of VirD4, the eleven VirB proteins are also essential for elaboration of a conjugative pilus termed the T pilus. The focus of this thesis is the characterization and analysis of two VirB proteins, VirB6 and VirB9, with respect to substrate translocation and T pilus biogenesis. Observed stabilizing effects of VirB6 on other VirB subunits and results of protein-protein interaction studies suggest that VirB6 mediates assembly of the secretion machine and T pilus through interactions with VirB7 and VirB9. Topology studies support a model for VirB6 as a polytopic membrane protein with a periplasmic N terminus, a large internal periplasmic loop, five transmembrane segments, and a cytoplasmic C terminus. Topology studies and Transfer DNA immunoprecipitation (TrIP) assays identified several important VirB6 functional domains: (i) the large internal periplasmic loop mediates interaction of VirB6 with the T-DNA, (ii) the membrane spanning region carboxyl-terminal to the large periplasmic loop mediates substrate transfer from VirB6 to VirB8, and (iii) the terminal regions of VirB6 are required for substrate transfer to VirB2 and VirB9. To analyze structure-function relationships of VirB9, the phenotypic consequences of dipeptide insertion mutations were characterized. Substrate discriminating mutations were shown to selectively export the oncogenic T-DNA and VirE2 to plant cells or a mobilizable IncQ plasmid to bacterial cells. Mutations affecting VirB9 interactions with VirB7 and VirB10 were localized to the C- and N- terminal regions respectively. Additionally, “uncoupling” mutations identified in VirB11 and VirB6 that block T pilus assembly, but not substrate transfer to recipient cells, were also identified in VirB9. These results in conjunction with computer analysis establish that VirB9, like VirB6, is also composed of distinct regions or domains that contribute in various ways to secretion channel activity and T pilus assembly. Lastly, in vivo immunofluorescent studies suggest that VirB9 localizes to the outer membrane and may play a role similar to that of secretion/ushers of types II and III secretion systems to facilitate substrate translocation across this final bacterial barrier. ^
Resumo:
The exosome is a 3’ to 5’ exoribonuclease complex that consists of ten essential subunits. In the cytoplasm, the exosome degrades mRNA in a general mRNA turnover pathway and in several mRNA surveillance pathways. In the nucleus, the exosome processes RNA precursors to form small, stable, mature RNA species, including rRNA, snRNA, and snoRNA. In addition to processing these RNAs, the nuclear exosome is also involved in degrading aberrantly processed forms of these RNAs, and others, including mRNA. The 3’ to 5’ exoribonuclease activity of the exosome is contributed by the RNB domain of the only catalytically active subunit, Rrp44p, a member of the RNase II family of enzymes. In addition to the RNB domain, Rrp44p consists of three putative RNA binding domains and has an uncharacterized N-terminus, which includes a CR3 region and PIN domain. In an effort to characterize the cellular functions of the domains of Rrp44p, this study identified a second nuclease active site in the PIN domain. Specifically, the PIN domain exhibits endoribonuclease activity in vitro and is essential for exosome function. Further analysis of the nuclease activities of Rrp44p indicate a role for the exoribonuclease activity of Rrp44p in the cytoplasmic and nuclear exosome. This work has also characterized the CR3 region of Rrp44p, a region that has not yet been characterized in any other protein. This region is needed for the majority, if not all, of the cytoplasmic exosome functions as well as for interaction with the exosome. The CR3 region, along with a histidine residue in the N-terminus of Rrp44p, may coordinate a zinc atom. Preliminary evidence supports a role for this coordination in exosome function. Further investigation, however, is needed to determine the molecular dependence of the exosome on the CR3 region of Rrp44p. Despite its initial discovery thirteen years ago, the essential function of Rrp44p, and the exosome, is not yet known. The studies presented here, however, indicate that the essential function of Rrp44p and the exosome is in the nucleus and depends on the nuclease activities of Rrp44p.
Resumo:
The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) delivers oncogenic T-DNA and effector proteins to susceptible plant cells. This leads to the formation of tumors termed Crown Galls. The VirB/D4 T4SS is comprised of 12 subunits (VirB1 to VirB11 and VirD4), which assemble to form two structures, a secretion channel spanning the cell envelope and a T-pilus extending from the cell surface. In A. tumefaciens, the VirB2 pilin subunit is required for assembly of the secretion channel and is the main subunit of the T-pilus. The focus of this thesis is to define key reactions associated with the T4SS biogenesis pathway involving the VirB2 pilin. Topology studies demonstrated that VirB2 integrates into the inner membrane with two transmembrane regions, a small cytoplasmic loop, and a long periplasmic loop comprised of covalently linked N and C termini. VirB2 was shown by the substituted cysteine accessibility method (SCAM) to adopt distinct structural states when integrated into the inner membrane and when assembled as a component of the secretion channel and the T-pilus. The VirB4 and VirB11 ATPases were shown by SCAM to modulate the structural state of membrane-integrated VirB2 pilin, and evidence was also obtained that VirB4 mediates extraction of pilin from the membrane. A model that VirB4 functions as a pilin dislocase by an energy-dependent mechanism was further supported by coimmunoprecipitation and osmotic shock studies. Mutational studies identified two regions of VirB10, an N-terminal transmembrane domain and an outer membrane-associated domain termed the antennae projection, that contribute selectively to T-pilus biogenesis. Lastly, characterization of a VirB10 mutant that confers a ‘leaky’ channel phenotype further highlighted the role of VirB10 in gating substrate translocation across the outer membrane as well as T-pilus biogenesis. Results of my studies support a working model in which the VirB4 ATPase catalyzes dislocation of membrane-integrated pilin, and distinct domains of VirB10 coordinate pilin incorporation into the secretion channel and the extracellular T-pilus.
Resumo:
The basis for the recent transition of Enterococcus faecium from a primarily commensal organism to one of the leading causes of hospital-acquired infections in the United States is not yet understood. To address this, the first part of my project assessed isolates from early outbreaks in the USA and South America using sequence analysis, colony hybridizations, and minimal inhibitory concentrations (MICs) which showed clinical isolates possess virulence and antibiotic resistance determinants that are less abundant or lacking in community isolates. I also revealed that the level of ampicillin resistance increased over time in clinical strains. By sequencing the pbp5 gene, I demonstrated an ~5% difference in the pbp5 gene between strains with MICs <4ug/ml and those with MICs >4µg/ml, but no specific sequence changes correlated with increases in MICs within the latter group. A 3-10% nucleotide difference was also seen in three other genes analyzed, which suggested the existence of two distinct subpopulations of E. faecium. This led to the second part of my project analyzing concatenated core gene sequences, SNPs, the 16S rRNA, and phylogenetics of 21 E. faecium genomes confirming two distinct clades; a community-associated (CA) clade and hospital-associated (HA) clade. Molecular clock calculations indicate that these two clades likely diverged ~ 300,000 to > 1 million years ago, long before the modern antibiotic era. Genomic analysis also showed that, in addition to core genomic differences, HA E. faecium harbor specific accessory genetic elements that may confer selection advantages over CA E. faecium. The third part of my project discovered 6 E. faecium genes with the newly identified “WxL” domain. My analyses, using RT-PCR, western blots, patient sera, whole-cell ELISA, and immunogold electron microscopy, indicated that E. faecium WxL genes exist in operons, encode bacterial cell surface localized proteins, that WxL proteins are antigenic in humans, and are more exposed on the surface of clinical isolates versus community isolates (even though they are ubiquitous in both clades). ELISAs and BIAcore analyses also showed that proteins encoded by these operons bind several different host extracellular matrix proteins, as well as to each other, suggesting a novel cell-surface complex. In summary, my studies provide new insights into the evolution of E. faecium by showing that there are two distantly related clades; one being more successful in the hospital setting. My studies also identified operons encoding WxL proteins whose characteristics could also contribute to colonization and virulence within this species.