59 resultados para repression
Resumo:
BACKGROUND: TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. METHODS: DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. RESULTS: Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. CONCLUSION: Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and contribute to the molecular carcinogenesis of OSCC. Differential expressions of TRAIL receptors in OSCC do not appear to play a crucial role in their apoptotic rate or metastatic progression.
Resumo:
Aldosterone plays a major role in the regulation of salt balance and the pathophysiology of cardiovascular and renal diseases. Many aldosterone-regulated genes--including that encoding the epithelial Na+ channel (ENaC), a key arbiter of Na+ transport in the kidney and other epithelia--have been identified, but the mechanisms by which the hormone modifies chromatin structure and thus transcription remain unknown. We previously described the basal repression of ENaCalpha by a complex containing the histone H3 Lys79 methyltransferase disruptor of telomeric silencing alternative splice variant a (Dot1a) and the putative transcription factor ALL1-fused gene from chromosome 9 (Af9) as well as the release of this repression by aldosterone treatment. Here we provide evidence from renal collecting duct cells and serum- and glucocorticoid-induced kinase-1 (Sgk1) WT and knockout mice that Sgk1 phosphorylated Af9, thereby impairing the Dot1a-Af9 interaction and leading to targeted histone H3 Lys79 hypomethylation at the ENaCalpha promoter and derepression of ENaCalpha transcription. Thus, Af9 is a physiologic target of Sgk1, and Sgk1 negatively regulates the Dot1a-Af9 repressor complex that controls transcription of ENaCalpha and likely other aldosterone-induced genes.
Resumo:
Tup1 forms a complex with Ssn6 in yeast. Ssn6-Tup1 complex is recruited via direct interactions with specific DNA binding proteins to a specific promoter region and mediates repression of several sets of genes including a-cell specific genes (asg) in $\alpha$ cells. It has been shown that repression of asgs also requires histone H4 and that Tup1 can directly interact with H3 and H4 in vitro. To address whether histone H3 is required for the repression of asgs, I have examined the effect of H3 and H4 mutations on the expression of a $\alpha$2-controlled LacZ reporter. Assay of $\beta$-glactosidase shows that mutations in either H3 or H4 cause a weak derepression of the reporter gene. Some double mutations result in a stronger derepression, while others do not. The H3 N-terminal deletion also leads to a slightly decreased expression of the reporter gene in $\alpha$ cells. Our data suggest that the N-termini of both H3 and H4 are cooperatively involved in the repression of a-cell specific genes in $\alpha$ cells, possibly through their interaction with Tup1.^ GCN5 was originally identified as a transcriptional regulator required to activate a subset of genes in yeast. Recently, it has been shown that GCN5 encodes the catalytic subunit of a nuclear histone acetyltransferase, providing the first direct link between histone acetylation and gene transcription. Recombinant Gcn5p (rGcn5p) exhibits a limited substrate specificity in vitro. However, neither the specificity of this enzyme in vivo nor the importance of particular acetylated residues to transcription or cell growth are well defined. In order to define the sites of histone acetylation mediated by Gcn5p in vivo and assess the significance of histone acetylation, more than 30 yeast strains have been constructed to bear specific H3 and/or H4 mutations in the presence or absence of GCN5 function. Our genetic data suggest that Gcn5p may have additional targets in vivo that are not identified as the targets of rGcn5p by previous studies. Western analysis using antibodies specifically recognizing particular acetylated isoforms of H3 and H4 led us to conclude that Gcn5p is necessary for full acetylation of multiple sites in both H3 and H4 in vivo. Consistent with these observations, rGcn5p still acetylates histones H3 and H4 bearing mutations either in H3 K14 or H4 K8,16, sites previously identified as the targets of acetylation by rGcn5p in H3 and H4. Our data also demonstrated that Gcn5p-mediated acetylation events are important for normal progression of the cell cycle and for transcriptional activation. Furthermore, a critical overall level of acetylation is essential for cell viability. ^
Resumo:
The corepressor complex Tup1-Ssn6 regulates many classes of genes in yeast including cell type specific, glucose repressible, and DNA damage inducible. Tup1 and Ssn6 are recruited to target promoters through their interactions with specific DNA binding proteins such as α2, Mig1, and Crt1. Most promoters that are repressed by this corepressor complex exhibit a high degree of nucleosomal organization. This chromatin domain occludes transcription factor access to the promoter element resulting in gene repression. Previous work indicated that Tup1 interacts with underacetylated isoforms of H3 and H4, and that mutation of these histones synergistically compromises repression. These studies predict that Tup1-hypoacetyalted histone interaction is important to the repression mechanism, and in vivo hyperacetylation might compromise the corepressors ability to repress target genes. ^ One way to alter histone acetylation levels in vivo is to alter the balance between histone acetyltransferases and histone deacetylases. To date five histone deacetylases (HDACs) have been identified in yeast Rpd3, Hos1, Hos2, Hos3 and Hda1. Deletion of single or double HDAC genes had little to no effect on Tup1-Ssn6 repression, but simultaneous deletion of three specific activities Rpd3, Hos1, and Hos2 abolished repression in vivo. Promoter regions of Tup1-Ssn6 target genes in these triple deacetylase mutant cells are dramatically hyperacetylated in both H3 and H4. Examination of bulk histone acetylation levels showed that this specific HDAC triple mutant combination (rpd3 hos1 hos2) caused a dramatic and concomitant hyperacetylation of both H3 and H4. The loss of repression in the rpd3 hos1 hos2 cells, but not in other mutants, is consistent with previous observations, which indicate that histones provide redundant functions in the repression mechanism and that high levels of acetylation are required to prevent Tup1 binding. Investigation into a potential direct interaction between the Tup1-Ssn6 corepressor complex and one or more HDAC activities showed that both Rpd3 and Hos2 interact with the corepressor complex in vivo. These findings indicate that Tup1-Ssn6 repression involves the recruitment of histone deacetylase activities to target promoters, where they locally deacetylate histone residues promoting Tup1-histone tail interaction to initiate and/or maintain the repressed state. ^
Resumo:
The Tup1-Ssn6 complex regulates the expression of diverse classes of genes in Saccharomyces cerevisiae including those regulated by mating type, DNA damage, glucose, and anaerobic stress. The complex is recruited to target genes by sequence-specific repressor proteins. Once recruited to particular promoters, it is not completely clear how it functions to block transcription. Repression probably occurs through interactions with both the basal transcriptional machinery and components of chromatin. Tup1 interactions with chromatin are strongly influenced by acetylation of histories H3 and H4. Tup1 binds to underacetylated histone tails and requires multiple histone deacetylases (HDACs) for its repressive functions. Like acetylation, histone methylation is involved in regulation of gene expression. The possible role of histone methylation in Tup1 repression is not known. Here we examined possible roles of histone methyltransferases in Tup1-Ssn6 functions. We found that like other genes, Tup1-Ssn6 target genes exhibit increases in the levels of histone H3 lysine 4 methylation upon activation. However, deletion of individual or multiple histone methyltransferases (HMTs) and other SET-domain containing genes has no apparent effect on Tup1-Ssn6 mediated repression of a number of well-defined targets. Interestingly, we discovered that Ssn6 interacts with Set2. Since deletion of SET2 does not affect Tup1-Ssn6 repression, Ssn6 may utilize Set2 in other contexts to regulate gene repression. In order examine if the two components of the Tup1-Ssn6 complex have independent functions in the cell, we identified genes differentially expressed in tup1Δ and ssn6Δ mutants using DNA microarrays. Our data indicate that ∼4% of genes in the cell are regulated by Ssn6 independently of Tup1. In addition, expression of genes regulated by Tup1-Ssn6 seems to be differently affected by deletion of Ssn6 and deletion of Tup1, which indicates that these components might have separate functions. Our data shed new light on the classical view of Tup1-Ssn6 functions, and indicate that Ssn6 might have repressive functions as well. ^
Resumo:
Osteosarcoma, a malignant bone tumor, rapidly destroys the cortical bone. We demonstrated that mouse K7M2 osteosarcoma cells were deficient in osterix (osx), a zinc finger-containing transcription factor required for osteoblasts differentiation and bone formation. These cells formed lytic tumors when injected into the tibia. The destruction of bone is mediated by osteoclasts in osteosarcoma. The less expression of osterix with osteolytic phenotype was also observed in more tumor cell lines. Replacement of osterix in K7M2 cells suppressed lytic bone destruction, inhibited tumor growth in vitro and in vivo, and suppressed lung metastasis in vivo and the migration of K7M2 to lung conditioned medium in vitro. By contrast, inhibiting osterix by vector-based small interfering RNA (siRNA) in two cell lines (Dunn and DLM8) that expressed high levels of osterix converted osteoblastic phenotype to lytic. Recognizing and binding of Receptor Activator of NF-κB (RANK) on osteoclast precursors by its ligand RANKL is the key osteoclastogenic event. Increased RANKL results in more osteoclast activity. We investigated whether K7M2-mediated bone destruction was secondary to an effect on RANKL. The conditioned medium from K7M2 could upregulate RANKL in normal osteoblast MC3T3, which might lead to more osteoclast formation. By contrast, the conditioned medium from K7M2 cells transfected with osx-expressing plasmid did not upregulate RANKL. Furthermore, Interleukin-1alpha (IL-1α) was significantly suppressed following osx transfection. IL-1α increased RANKL expression in MC3T3 cells, suggesting that osx may control RANKL via a mechanism involving IL-1α. Using a luciferase reporter assay, we demonstrated that osx downregulated IL-1α through a transcription-mediated mechanism. Following suppression of osterix in Dunn and DLM8 cells led to enhanced IL-1α promoter activity and protein production. Site-directed mutagenesis and Chromatin immunoprecipitation (ChIP) indicated that osterix downregulated IL-1α through a Sp1-binding site on the IL-1α promoter. These data suggest that osterix is involved in the lytic phenotype of osteosarcoma and that this is mediated via transcriptional repression of IL-1α. ^
Resumo:
Most studies of p53 function have focused on genes transactivated by p53. It is less widely appreciated that p53 can repress target genes to affect a particular cellular response. There is evidence that repression is important for p53-induced apoptosis and cell cycle arrest. It is less clear if repression is important for other p53 functions. A comprehensive knowledge of the genes repressed by p53 and the cellular processes they affect is currently lacking. We used an expression profiling strategy to identify p53-responsive genes following adenoviral p53 gene transfer (Ad-p53) in PC3 prostate cancer cells. A total of 111 genes represented on the Affymetrix U133A microarray were repressed more than two fold (p ≤ 0.05) by p53. An objective assessment of array data quality was carried out using RT-PCR of 20 randomly selected genes. We estimate a confirmation rate of >95.5% for the complete data set. Functional over-representation analysis was used to identify cellular processes potentially affected by p53-mediated repression. Cell cycle regulatory genes exhibited significant enrichment (p ≤ 5E-28) within the repressed targets. Several of these genes are repressed in a p53-dependent manner following DNA damage, but preceding cell cycle arrest. These findings identify novel p53-repressed targets and indicate that p53-induced cell cycle arrest is a function of not only the transactivation of cell cycle inhibitors (e.g., p21), but also the repression of targets that act at each phase of the cell cycle. The mechanism of repression of this set of p53 targets was investigated. Most of the repressed genes identified here do not harbor consensus p53 DNA binding sites but do contain binding sites for E2F transcription factors. We demonstrate a role for E2F/RB repressor complexes in our system. Importantly, p53 is found at the promoter of CDC25A. CDC25A protein is rapidly degraded in response to DNA damage. Our group has demonstrated for the first time that CDC25A is also repressed at the transcript level by p53. This work has important implications for understanding the DNA damage cell cycle checkpoint response and the link between E2F/RB complexes and p53 in the repression of target genes. ^
Resumo:
Survivin (BIRC5) is a member of the Inhibitor of Apoptosis (IAP) gene family and functions as a chromosomal passenger protein as well as a mediator of cell survival. Survivin is widely expressed during embryonic development then becomes transcriptionally silent in most highly differentiated adult tissues. It is also overexpressed in virtually every type of tumor. The survivin promoter contains a canonical CpG island that has been described as epigenetically regulated by DNA methylation. We observed that survivin is overexpressed in high grade, poorly differentiated endometrial tumors, and we hypothesized that DNA hypomethylation could explain this expression pattern. Surprisingly, methylation specific PCR and bisulfite pyrosequencing analysis showed that survivin was hypermethylated in endometrial tumors and that this hypermethylation correlated with increased survivin expression. We proposed that methylation could activate survivin expression by inhibit the binding of a transcriptional repressor. ^ The tumor suppressor protein p53 is a well documented transcriptional repressor of survivin and examination of the survivin promoter showed that the p53 binding site contains 3 CpG sites which often become methylated in endometrial tumors. To determine if methylation regulates survivin expression, we treated HCT116 cells with decitabine, a demethylation agent, and observed that survivin transcript and protein levels were significantly repressed following demethylation in a p53 dependent manner. Subsequent binding studies confirmed that DNA methylation inhibited the binding of p53 protein to its binding site in the survivin promoter. ^ We are the first to report this novel mechanism of epigenetic regulation of survivin. We also conducted microarray analysis which showed that many other cancer relevant genes may also be regulated in this manner. While demethylation agents are traditionally thought to inhibit cancer cell growth by reactivating tumor suppressors, our results indicate that an additional important mechanism is to decrease the expression of oncogenes. ^
Resumo:
The neu oncogene encodes a growth factor receptor-like protein, p185, with an intrinsic tyrosine kinase activity. A single point mutation, an A to T transversion resulting in an amino acid substitution from valine to glutamic acid, in the transmembrane domain of the rat neu gene was found to be responsible for the transforming and tumorigenic phenotype of the cells that carry it. In contrast, the human proto-neu oncogene is frequently amplified in tumors and cell lines derived from tumors and the human neu gene overexpression/amplification in breast and ovarian cancers is known to correlate with poor patient prognosis. Examples of the human neu gene overexpression in the absence of gene amplification have been observed, which may suggest the significant role of the transcriptional and/or post-transcriptional control of the neu gene in the oncogenic process. However, little is known about the transcriptional mechanisms which regulate the neu gene expression. In this study, three examples are presented to demonstrate the positive and negative control of the neu gene expression.^ First, by using band shift assays and methylation interference analyses, I have identified a specific protein-binding sequence, AAGATAAAACC ($-$466 to $-$456), that binds a specific trans-acting factor termed RVF (for EcoRV factor on the neu promoter). The RVF-binding site is required for maximum transcriptional activity of the rat neu promoter. This same sequence is also found in the corresponding regions of both human and mouse neu promoters. Furthermore, this sequence can enhance the CAT activity driven by a minimum promoter of the thymidine kinase gene in an orientation-independent manner, and thus it behaves as an enhancer. In addition, Southwestern (DNA-protein) blot analysis using the RVF-binding site as a probe points to a 60-kDa polypeptide as a potential candidate for RVF.^ Second, it has been reported that the E3 region of adenovirus 5 induces down-regulation of epidermal growth factor (EGF) receptor through endocytosis. I found that the human neu gene product, p185, (an EGF receptor-related protein) is also down-regulated by adenovirus 5, but via a different mechanism. I demonstrate that the adenovirus E1a gene is responsible for the repression of the human neu gene at the transcriptional level.^ Third, a differential expression of the neu gene has been found in two cell model systems: between the mouse fibroblast Swiss-Webster 3T3 (SW3T3) and its variant NR-6 cells; and between the mouse liver tumor cell line, Hep1-a, and the mouse pancreas tumor cell line, 266-6. Both NR-6 and 266-6 cell lines are not able to express the neu gene product, p185. I demonstrate that, in both cases, the transcriptional repression of the neu gene may account for the lack of the p185 expression in these two cell lines. ^
Resumo:
The potential effects of the E1A gene products on the promoter activities of neu were investigated. Transcription of the neu oncogene was found to be strongly repressed by the E1A gene products and this requires that conserved region 2 of the E1A proteins. The target for E1A repression was localized within a 140 base pair (bp) DNA fragment in the upstream region of the neu promoter. To further study if this transcriptional repression of neu by E1A can inhibit the transforming ability of the neu transformed cells, the E1A gene was introduced into the neu oncogene transformed B104-1-1 cells and developed B-E1A cell lines that express E1A proteins. These B-E1A stable transfectants have reduced transforming activity compared to the parental B104-1-1 cell line and we conclude that E1A can suppress the transformed phenotypes of the neu oncogene transformed cells via transcriptional repression of neu.^ To study the effects of E1A on metastasis, we first introduced the mutation-activated rat neu oncogene into 3T3 cells and showed that both the neu oncogene transformed NIH3T3 cells and Swiss Webster 3T3 cells exhibited metastatic properties in vitro and in vivo, while their parental 3T3 cells did not. Additionally, the neu-specific monoclonal antibody 7.16.4, which can down regulate neu-encoded p185 protein, effectively reduced the metastatic properties induced by neu. To investigate if E1A can reduce the metastatic potential of neu-transformed cells, we also compared the metastatic properties of B-E1A cell lines and B104-1-1 cell. B-E1A cell lines showed reduced invasiveness and lung colonization than the parental neu transformed B104-1-1 cells. We conclude that E1A gene products also have inhibitory effect on the metastatic phenotypes of the neu oncogene transformed cells.^ The product of human retinoblastoma (RB) susceptibility gene has been shown to complex with E1A gene products and is speculated to regulate gene expression. We therefore investigated in E1A-RB interaction might be involved in the regulation of neu oncogene expression. We found that the RB gene product can decrease the E1A-mediated repression of neu oncogene and the E1A binding region of the RB protein is required for the derepression function. ^
Resumo:
HER-2/neu is a receptor tyrosine kinase highly homologous with epidermal growth factor receptor. Overexpression and/or amplification of HER-2/neu has been implicated in the genesis of a number of human cancers, especially breast and ovarian cancers. Transcriptional upregulation has been shown to contribute significantly to the overexpression of this gene. Studies on the transcriptional regulation of HER-2/neu gene are important for understanding the mechanism of cell transformation and developing the therapeutic strategies to block HER-2/neu-mediated cancers. PEA3 is a DNA binding transcriptional factor and its consensus sequence exists on the HER-2/neu promoter. To examine the role of PEA3 in HER-2/neu expression and cell transformation, we transfected PEA3 into the human breast and ovarian cancer cells that overexpress HER-2/neu and showed that PEA3 dramatically represses HER-2/neu transcription. PEA3 suppresses the oncogenic neu-mediated transformation in mouse fibroblast NIH 3T3 cells. Expression of PEA3 selectively blocks the growth of human cancer cells that overexpress HER-2/neu and inhibits their colony formation. It does not occur in the cancer cells expressing basal level of HER-2/neu. Further studies in the orthotopic ovarian cancer model demonstrated that expression of PEA3 preferentially inhibits growth and tumor development of human cancer cells that overexpress HER-2/neu, the tumor-bearing mice survived significantly longer if treated by injection of the PEA3-liposome complex intraperitoneally. Immunoblotting and immunohistochemical analysis of the tumor tissues indicated that PEA3 mediates the tumor suppression activity through targeting HER-2/neu-p185. Thus, PEA3 is a negative regulator of HER-2/neu gene expression and functions as a tumor suppressor gene in the HER-2/neu-overexpressing human cancer cells.^ The molecular mechanisms of PEA3 mediated transcriptional repression were investigated. PEA3 binds specifically at the PEA3 site on HER-2/neu promoter and this promoter-binding is required for the PEA3 mediated transcriptional repression. Mutation of the PEA3 binding site on HER-2/neu promoter causes decreased transcriptional activity, indicating that the PEA3 binding site is an enhancer-like element in the HER-2/neu-overexpressing cells. We therefore hypothesized that in the HER-2/neu-overexpressing cells, PEA3 competes with a transactivator for binding to the PEA3 site, preventing the putative factor from activating the transcription of HER-2/neu. This hypothesis was supported by the data which demonstrate that PEA3 competes with another nuclear protein for binding to the HER-2/neu promoter in vitro, and expression of a truncated protein which encodes the DNA binding domain of PEA3 is sufficient to repress HER-2/neu transcription in the HER-2/neu-overexpressing human cancer cells. ^
Resumo:
Studies on the transcriptional regulation of serum amyloid A1 (SAA1) gene, a liver specific acute-phase gene, identified a regulatory element in its promoter that functioned to repress (SAA1) gene transcription in nonliver cells. This silencer element interacts with a nuclear protein that is detectable in HeLa cells, fibroblasts and placental tissues but not in liver or liver-derived cells. As the expression pattern of this repressor is consistent with its potential regulatory role in repressing SAA1 expression, and that many other liver gene promoters also contain this repressor binding site, we sought to investigate whether this repressor may have a broader functional role in repressing liver genes. ^ We have utilized protein purification, cell culture, transient and stable gene transfection, and molecular biology approaches to identify this protein and investigate its possible function in the regulation of (SAA1) and other liver genes. Analyses of amino acid sequence of the purified nuclear protein, and western blot and gel shift studies identified the repressor as transcription factor AP-2 or AP-2-like protein. Using transient transfection of DNA into cultured cells, we demonstrate that AP-2 can indeed function as a repressor to inhibit transcription of SAA1 gene promoter. This conclusion is supported by the following experimental results: (1) overexpression of AP-2 in hepatoma cells inhibits conditioned medium (CM)-induced expression of SAA1 promoter; (2) binding of AP-2 to the SAA1 promoter is required for AP-2 repression function; (3) one mechanism by which AP-2 inhibits SAA1 may be by antagonizing the activation function of the strong transactivator NFκB; (4) mutation of AP-2 binding sites results in derepression of SAM promoter in HeLa cells; and (5) inhibition of endogenous AP-2 activity by a dominant-negative mutant abolishes AP-2's inhibitory effect on SAM promoter in HeLa cells. In addition to the SAM promoter, AP-2 also can bind to the promoter regions of six other liver genes tested, suggesting that it may have a broad functional role in restricting the expression of many liver genes in nonliver cells. Consistent with this notion, ectopic expression of AP-2 also represses CM-mediated activation of human third component of complement 3 promoter. Finally, in AP-2-expressing stable hepatoma cell lines, AP-2 inhibits not only the expression of endogenous SAA, but also the expression of several other endogenous liver genes including albumin, α-fetoprotein. ^ Our findings that AP-2 has the ability to repress the expression of liver genes in nonliver cells opens a new avenue of investigation of negative regulation of gene transcription, and should improve our understanding of tissue-specific expression of liver genes. In summary, our data provide evidence suggesting a novel role of AP-2 as a repressor, inhibiting the expression of liver genes in nonliver cells. Thus, the tissue-specific expression of AP-2 may constitute an important mechanism contributing to the liver-specific expression of liver genes. ^
Resumo:
Heat shock protein 90 (HSP90) is an abundant molecular chaperone that regulates the functional stability of client oncoproteins, such as STAT3, Raf-1 and Akt, which play a role in the survival of malignant cells. The chaperone function of HSP90 is driven by the binding and hydrolysis of ATP. The geldanamycin analog, 17-AAG, binds to the ATP pocket of HSP90 leading to the degradation of client proteins. However, treatment with 17-AAG results in the elevation of the levels of antiapoptotic proteins HSP70 and HSP27, which may lead to cell death resistance. The increase in HSP70 and HSP27 protein levels is due to the activation of the transcription factor HSF-1 binding to the promoter region of HSP70 and HSP27 genes. HSF-1 binding subsequently promotes HSP70 and HSP27 gene expression. Based on this, I hypothesized that inhibition of transcription/translation of HSP or client proteins would enhance 17-AAG-mediated cytotoxicity. Multiple myeloma (MM) cell lines MM.1S, RPMI-8226, and U266 were used as a model. To test this hypothesis, two different strategies were used. For the first approach, a transcription inhibitor was combined with 17-AAG. The established transcription inhibitor Actinomycin D (Act D), used in the clinic, intercalates into DNA and blocks RNA elongation. Stress inducible (HSP90á, HSP70 and HSP27) and constitutive (HSP90â and HSC70) mRNA and protein levels were measured using real time RT-PCR and immunoblot assays. Treatment with 0.5 µM 17-AAG for 8 hours resulted in the induction of all HSP transcript and protein levels in the MM cell lines. This induction of HSP mRNA levels was diminished by 0.05 µg/mL Act D for 12 hours in the combination treatment, except for HSP70. At the protein level, Act D abrogated the 17-AAG-mediated induction of all HSP expression levels, including HSP70. Cytotoxic evaluation (Annexin V/7-AAD assay) of Act D in combination with 17-AAG suggested additive or more than additive interactions. For the second strategy, an agent that affected bioenergy production in addition to targeting transcription and translation was used. Since ATP is necessary for the proper folding and maturation of client proteins by HSP90, ATP depletion should lead to a decrease in client protein levels. The transcription and translation inhibitor 8-Chloro-Adenosine (8-Cl-Ado), currently in clinical trials, is metabolized into its cytotoxic form 8-Cl-ATP causing a parallel decrease of the cellular ATP pool. Treatment with 0.5 µM 17-AAG for 8 hours resulted in the induction of all HSP transcript and protein levels in the three MM cell lines evaluated. In the combination treatment, 10 µM 8-Cl-Ado for 20 hours did not abrogate the induction of HSP mRNA or protein levels. Since cellular bioenergy is necessary for the stabilization of oncoproteins by HSP90, immunoblot assays analyzing for expression levels of client proteins such as STAT3, Raf-1, and Akt were performed. Immunoblot assays detecting for the phosphorylation status of the translation repressor 4E-BP1, whose activity is modulated by upstream kinases sensitive to changes in ATP levels, were also performed. The hypophosphorylated state of 4E-BP1 leads to translation repression. Data indicated that treatment with 17-AAG alone resulted in a minor (<10%) change in STAT3, Raf-1, and Akt protein levels, while no change was observed for 4E-BP1. The combination treatment resulted in more than 50% decrease of the client protein levels and hypophosphorylation of 4E-BP1 in all MM cell lines. Treatment with 8-Cl-Ado alone resulted in less than 30% decrease in client protein levels as well as a decrease in 4E-BP1 phosphorylation. Cytotoxic evaluation of 8-Cl-Ado in combination with 17-AAG resulted in more than additive cytotoxicity when drugs were combined in a sequential manner. In summary, these data suggest that the mechanism-based combination of agents that target transcription, translation, or decrease cellular bioenergy with 17-AAG results in increase cytotoxicity when compared to the single agents. Such combination strategies may be applied in the clinic since these drugs are established chemotherapeutic agents or currently in clinical trials.
Resumo:
Repressor element 1 (RE1)-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF) can repress several terminal neuronal differentiation genes by binding to a specific DNA sequence (RE1/neuron-restrictive silencer element [NRSE]) present in their regulatory regions. REST-VP16 binds to the same RE1/NRSE, but activates these REST/NRSF target genes. However, it is unclear whether REST-VP16 expression is sufficient to cause formation of functional neurons either from neural stem cells or from heterologous stem cells. Here we show that the expression of REST-VP16 in myoblasts grown under muscle differentiation conditions blocked entry into the muscle differentiation pathway, countered endogenous REST/NRSF-dependent repression, activated the REST/NRSF target genes, and, surprisingly, activated other neuronal differentiation genes and converted the myoblasts to a physiologically active neuronal phenotype. Furthermore, in vitro differentiated neurons produced by REST-VP16-expressing myoblasts, when injected into mouse brain, survived, incorporated into the normal brain, and did not form tumors. This is the first instance in which myoblasts were converted to a neuronal phenotype. Our results suggest that direct activation of REST/NRSF target genes with a single transgene, REST-VP16, is sufficient to activate other terminal neuronal differentiation genes and to override the muscle differentiation pathways, and they suggest that this approach provides an efficient way of triggering neuronal differentiation in myoblasts and possibly other stem cells.
Resumo:
Mammalian constitutive photomorphogenic 1 (COP1), a p53 E3 ubiquitin ligase, is a key negative regulator for p53. DNA damage leads to the translocation of COP1 to the cytoplasm, but the underlying mechanism remains unknown. We discovered that 14-3-3σ controlled COP1 subcellular localization and protein stability. Investigation of the underlying mechanism suggested that, upon DNA damage, 14-3-3σ bound to phosphorylated COP1 at S387, resulting in COP1 translocation to the cytoplasm and cytoplasmic COP1 ubiquitination and proteasomal degradation. 14-3-3σ targeted COP1 for degradation to prevent COP1-mediated p53 degradation, p53 ubiquitination, and p53 transcription repression. COP1 expression promoted cell proliferation, cell transformation, and tumor progression, attesting to its role in cancer promotion. 14-3-3σ negatively regulated COP1 function and prevented tumor growth in cancer xenografts. COP1 protein levels were inversely correlated with 14-3-3σ protein levels in human breast and pancreatic cancer specimens. Together, these results define a novel, detailed mechanism for the posttranslational regulation of COP1 upon DNA damage and provide a mechanistic explanation of the correlation of COP1 overexpression with 14-3-3σ downregulation during tumorigenesis.