49 resultados para lymphocytes B activés via le CD40 (CD40-B)
Resumo:
Non-Hodgkin's Lymphomas (NHL) are a group (>30) of important human lymphoid cancers that unlike other tumors today, are showing a marked increase in incidence. The lack of insight to the pathogenesis of B-cell NHL poses a significant problem in the early detection and effective treatment of these malignancies. This study shows that large B-cell lymphoma (LBCL) cells, the most common type of B-cell NHL (account for more than 30% of cases), have developed a novel mechanism for autonomous neoplastic B cell growth. We have identified that the key transcription factor NF-κB, is constitutively activated in LBCL cell lines and primary biopsy-derived LBCL cells, suggesting that they are autonomously activated, and do not require accessory T-cell signaling for cell growth and survival. Further studies have indicated that LBCL cells ectopically express an important T-cell associated co-mitogenic factor, CD154 (CD40 ligand), that is able to internally activate the CD401NF-κB pathway, through constitutive binding to its cognate receptor, CD40, on the lymphoma cell surface. CD40 activation triggers the formation of a “Signalosome” comprising virtually the entire canonical CD40/NF-κB signaling pathway that is anchored by CD40 in plasma membrane lipid rafts. The CD40 Signalosome is vulnerable to interdiction by antibody against CD40 that disrupts the Signalosome and induces cell death in the malignant cells. In addition to constitutive NF-κB activation, we have found that the nuclear factor of activated T cells (NFAT) transcription factor is also constitutively activated in LBCL cells. We have demonstrated that the constitutively active NFATc1 and c-rel members of the NFAT and NF-κB families of transcription factors, respectively, interact with each other, bind to the CD154 promoter, and synergistically activate CD154 gene transcription. Down-regulation of NFATc1 and c-rel with small interfering RNA inhibits CD154 gene transcription and lymphoma cell growth. Our findings suggest that continuous CD40 activation not only provides dysregulated proliferative stimuli for lymphoma cell growth and extended tumor cell survival, but also allows continuous regeneration of the CD40 ligand in the lymphoma cell and thereby recharges the system through a positive feedback mechanism. Targeting the CD40/NF-κB signaling pathway could provide potential therapeutic modalities for LBCL cells in the future. ^
Resumo:
B-lymphocyte stimulator (BLyS also called BAFF), is a potent cell survival factor expressed in many hematopoietic cells. BLyS levels are elevated in the serum of non-Hodgkin lymphoma (NHL) patients, and have been reported to be associated with disease progression, and prognosis. To understand the mechanisms involved in BLyS gene expression and regulation, we examined expression, function, and regulation of the BLyS gene in B cell non-Hodgkin's lymphoma (NHL-B) cells. BLyS is constitutively expressed in aggressive NHL-B cells including large B cell lymphoma (LBCL) and mantle cell lymphoma (MCL) contributing to survival and proliferation of malignant B cells. Two important transcription factors, NF-κB and NFAT, were found to be involved in regulating BLyS expression through at least one NF-κB and two NFAT binding sites in the BLyS promoter. Further study indicates that the constitutive activation of NF-κB and BLyS in NHL-B cells forms a positive feedback loop contributing to cell survival and proliferation. In order to further investigate BLyS signaling pathway, we studied the function of BAFF-R, a major BLyS receptor, on B cells survival and proliferation. Initial study revealed that BAFF-R was also found in the nucleus, in addition to its presence on plasma membrane of B cells. Nuclear presentation of BAFF-R can be increased by anti-IgM and soluble BLyS treatment in normal peripheral B lymphocytes. Inhibition of BLyS expression decreases nuclear BAFF-R level in LBCL cells. Furthermore, we showed that BAFF-R translocated to nucleus through the classic karyopherin pathway. A candidate nuclear localization sequence (NLS) was identified in the BAFF-R protein sequence and mutation of this putative NLS can block BAFF-R entering nucleus and LBCL cell proliferation. Further study showed that BAFF-R co-localized with NF-κB family member, c-rel in the nucleus. We also found BAFF-R mediated transcriptional activity, which could be increased by c-rel. We also found that nuclear BAFF-R could bind to the NF-κB binding site on the promoters of NF-κB target genes such as BLyS, CD154, Bcl-xL, Bfl-1/A1 and IL-8. These findings indicate that BAFF-R may also promote survival and proliferation of normal B cells and NHL-B cells by directly functioning as a transcriptional co-factor with NF-κB family member. ^
Resumo:
This investigation examined the clonal dynamics of B-cell expression and evaluated the role of idiotype network interactions in shaping the expressed secondary B-cell repertoire. Three interrelated experimental approaches were applied. The first approach was designed to distinguish between regulatory influences controlled by the major histocompatibility complex (MHC) and regulatory influences controlled by non-MHC factors including the idiotype network. This approach consisted of studies on the clonal dynamics and heterogeneity of the expressed IgG antibody repertoire of BALB/c mice. The second approach involved the analysis of the clonal dynamics of antibody responses of outbred rabbits. This analysis was coupled with studies to detect the occurrence and activity of constituents of the idiotype network. In the third approach the transfer of rabbit lymphocytes from immunized donors to MHC matched naive recipients was used to examine the effects of recipient non-MHC immunoregulatory influences on the expression of donor memory B-cells. Although many memory B cells were unaffected by non-MHC influences, these data show that non-MHC immunoregulatory influences can affect the expression of B-cells in the secondary response of inbred mice and outbred rabbits. The results also indicate that most IgG antibody responses are heterogeneous and are characterized by a stable group of dominant clonotypes. Clonal dominance and B-cell memory were found to be established early in an immune response. The expression of B memory clones appeared to be favored over the expression of virgin B cells. The injection of anti-tetanus antibody induced the antigen independent production of anti-tetanus antibody, probably through idiotypic mechanisms. These results demonstrate that both antibody and antigen can affect the expressed B-ceIl repertoire. Thus, idiotypic interactions are capable of influencing the expression of B-cells and these findings support the existence and function of an idiotype network with strong immunoregulatory potential. ^
Resumo:
Epstein-Barr virus is a herpes virus distinguished by its remarkable specificity for the B lymphocyte of humans and certain other primates. Although the transformation process is very efficient, is has become clear that only a fraction of B lymphocytes is susceptible. Therefore the question may be raised if transformation is related to B cell stage of activation. B cells were purified from peripheral blood mononuclear cells by the removal of monocytes using elutriation and sheep red blood cell rosetting to remove T cells. Retesting B cells were purified using discontinuous Percoll gradients. Activation of resting cells for 24 hours with anti-mu or Staphylococcus aureus Cowan I (SAC) resulted in transition of susceptible cells into the G(,1) phase of the cell cycle as shown by an increase in cell size, an increase in uridine incorporation and an increase in sensitivity to B cell growth factor (BCGF). Entry into S phase was achieved by extending the period of activation to 48-96 hr as shown by an increase in thymidine incorporation. By this criterion, SAC activated cells entered S phase on day 2 and anti-mu treated cells on day 3. Control (G(,0)) cells and cells activated for varying lengths of time (G(,1), G(,1) plus S) were exposed to EBV and plated in a limiting dilution assay to determine the frequency of EBV-transformable cells. Control cells and cells activated for 24 hr had a precursor frequency of 1% to 2%. With continued activation, however, precursor frequency decreased as a function of the duration of activation. The decrease in frequency of transformable cells correlated with the entry of the population into S phase. The transformation frequency in the SAC-treated population was reduced twenty-fold on day 4, whereas in the anti-mu treated population it was reduced ten-fold. Treating cells with BCGF in conjunction with low concentrations of anti-mu decreased the transformation frequency to levels lower than anti-mu alone, further suggesting that entry into S phase is accompanied by a reduction in transformability. These results indicate that resting B cells are highly susceptible to transformation and that with in vitro activation into the cell cycle B cells become progressively insensitive to EBV. ^
Resumo:
The feasibility of establishment of continuously proliferating growth factor-dependent human B lymphocytes was investigated. Normal B lymphocytes prepared from peripheral venous blood were stimulated with a variety of known polyclonal B cell activators, in the continuous presence of various cytokine preparations. Continuously proliferating growth factor-dependent B cell populations were obtained from cultures activated with either insoluble anti-IgM ((mu)-chain specific), soluble anti-IgM, heat-killed Staphylococcus aureus Cowen I (SAC), or dextran sulphate (DxS), in the continuous presence of exogenously added growth factor preparations containing either IL-1, IL-2 and BCGF, or BCGF alone. Although growth factor-dependent B cell lines were obtained via all three methods of activation, the correlation of mode of activation and growth factor preparation proved to be critical. B cell lines could not be established with anti-(mu) activation in the presence of only BCGF; however, B cell lines were successfully obtained with SAC or DxS activation from those cultures continuously replenished with only BCGF. These cultured B lymphocyte populations were routinely maintained in logarithmic-phase growth in the presence of exogenously added growth factor, and exhibited a population doubling time of approximately 36 hours. They were shown to specifically absorb BCGF, suggesting the presence of membrane receptors for it. Also, these cultured B cells have been utilized for the development of a microassay for the assessment of a M(,r) 12,000-14,000 B cell growth factor activity that is accurate, sensitive, and precise. The pronounced sensitivity of this bioassay beyond that of the conventional peripheral blood B cell assay has aided in the purification to homogeneity of natural product extracellular BCGF (EC-BCGF), and in the determination of the nucleotide sequence for a gene coding for a protein exhibiting BCGF activity. Additionally, these B cell lines specifically absorb, and proliferate in the presence of, an affinity-purified M(,r) 60,000 trypsin-sensitive intracellular protein derived from freshly isolated human T lymphocytes, providing evidence for a putative intracellular precursor of EC-BCGF, or a novel high molecular weight BCGF species. ^
Resumo:
The non-Hodgkin's B cell lymphomas are a diverse group of neoplastic diseases. The incidence rate of the malignant tumors has been rising rapidly over the past twenty years in the United States and worldwide. The lack of insight to pathogenesis of the disease poses a significant problem in the early detection and effective treatment of the human malignancies. These studies attempted to investigate the molecular basis of pathogenesis of the human high grade B cell non-Hodgkin's lymphomas with a reverse genetic approach. The specific objective was to clone gene(s) which may play roles in development and progression of human high grade B cell non-Hodgkin's lymphomas.^ The messenger RNAs from two high grade B cell lymphoma lines, CJ and RR, were used for construction of cDNA libraries. Differential screening of the derived cDNA libraries yielded a 1.4 kb cDNA clone. The gene, designated as NHL-B1.4, was shown to be highly amplified and over-expressed in the high grade B cell lymphoma lines. It was not expressed in the peripheral blood lymphoid cells from normal donors. However, it was inducible in peripheral blood T lymphocytes by a T cell mitogen, PHA, but could not be activated in normal B cells by B cell mitogen PMA. Further molecular characterization revealed that the gene may have been rearranged in the RR and some other B cell lymphoma lines. The coding capacity of the cDNA has been confirmed by a rabbit reticulocyte lysate and wheat germ protein synthesis system. A recombinant protein with a molecular weight of approximate 30 kDa was visualized in autoradiogram. Polyclonal antisera have been generated by immunization of two rabbits with the NHL-B1.4 recombinant protein produced in the E. coli JM109. The derived antibody can recognize a natural protein with molecular weight of 49 kDa in cell lysate of activated peripheral T lymphocytes of normal donors and both the cell lysate and supernatant of RR B cell lymphoma lines. The possible biologic functions of the molecule has been tested preliminarily in a B lymphocyte proliferation assay. It was found that the Q-sepharose chromatograph purified supernatant of COS cell transfection could increase tritiated thymidine uptake by B lymphocytes but not by T lymphocytes. The B cell stimulatory activity of the supernatant of COS cell tranfection could be neutralized by the polyclonal antisera, indicating that the NHL-B1.4 gene product may be a molecule with BCGF-like activity.^ The expression profiles of NHL-B1.4 in normal and neoplastic lymphoid cells were consistent with the current B lymphocyte activation model and autocrine hypothesis of high grade B cell lymphomagenesis. These results suggested that the NHL-B1.4 cDNA may be a disease-related gene of human high grade B cell lymphomas, which may codes for a postulated B cell autocrine growth factor. ^
Resumo:
Cutaneous exposure to ultraviolet-B radiation (UVR) results in the suppression of cell-mediated immune responses such as contact hypersensitivity (CHS) and delayed-type hypersensitivity (DTH). This modulation of immune responses is mediated by local or systemic mechanisms, both of which are associated with the generation of antigen-specific suppressor T lymphocytes (Ts). UV-induced Ts have been shown to be CD3+CD4+CD8 − T cells that control multiple immunological pathways. However, the precise mechanisms involved in the generation and function of these immunoregulatory cells remain unclear. We investigated the cellular basis for the generation of UV-induced Ts lymphocytes in both local and systemic models of immune suppression, and further examined the pleiotrophic function of these immunoregulatory cells. ^ We used Thy1.1 and Thy1.2 congenic mice in a draining lymph node (DLN) cell transfer model to analyze the role played by epidermal Langerhans cells in the generation of Ts cells. We demonstrate that T cells tightly adhered to antigen-presenting cells (APC) from UV-irradiated skin are the direct progenitors of UV-induced Ts lymphocytes. Our studies also reveal that UV-induced DNA-damage in the form of cyclobutyl pyrimidine dimers (CPD) in the epidermal APC is crucial for the altered maturation of these adherent T cells into Ts. ^ We used TCR transgenic mice in an adoptive transfer model and physically tracked the antigen-specific clones during immune responses in unirradiated versus UV-irradiated mice. We demonstrate that UV-induced Ts and effector TDTH cells share the same epitope specificity, indicating that both cell populations arise from the same clonal progenitors. UVR also causes profound changes in the localization and proliferation of antigen-specific T cells during an immune response. Antigen-specific T cells are not detectable in the DLNs of UV-irradiated mice after 3 days post-immunization, but are found in abundance in the spleen. In contrast, these clones continue to be found in the DLNs and spleens of normal animals several days post-immunization. Our studies also reveal that a Th2 cytokine environment is essential for the generation of Ts in UV-irradiated mice. ^ The third part of our study examined the pleiotrophic nature of UV-induced Ts. We used a model for the induction of both cellular and humoral responses to human gamma-globulin (HGG) to demonstrate that UV-induced Ts lymphocytes can suppress DTH as well as antibody responses. (Abstract shortened by UMI.) ^
Resumo:
We previously demonstrated that bone marrow cells (BMCs) migrate to TC71 and A4573 Ewing’s sarcoma tumors where they can differentiate into endothelial cells (ECs) and pericytes and, participate in the tumor vascular development. This process of neo-vascularization, known as vasculogenesis, is essential for Ewing’s sarcoma growth with the soluble vascular endothelial growth factor, VEGF165, being the chemotactic factor for BMC migration to the tumor site. Inhibiting VEGF165 in TC71 tumors (TC/siVEGF7-1) inhibited BMC infiltration to the tumor site and tumor growth. Introducing the stromal-derived growth factor (SDF-1α) into the TC/siVEGF7-1 tumors partially restored vasculogenesis with infiltration of BMCs to a perivascular area where they differentiated into pericytes and rescued tumor growth. RNA collected from the SDF-1α-treated TC/siVEGF7-1 tumors also revealed an increase in platelet-derived growth factor B (PDGF-B) mRNA levels. PDGF-B expression is elevated in several cancer types and the role of PDGF-B and its receptor, PDGFR-β, has been extensively described in the process of pericyte maturation. However, the mechanisms by which PDGF-B expression is up-regulated during vascular remodeling and the process by which BMCs differentiate into pericytes during tumor vasculogenesis remain areas of investigation. In this study, we are the first to demonstrate that SDF-1α regulates the expression of PDGF-B via a transcriptional mechanism which involves binding of the ELK-1 transcription factor to the pdgf-b promoter. We are also first to validate the critical role of the SDF-1α/PDGF-B pathway in the differentiation of BMCs into pericytes both in vitro and in vivo. SDF-1α up-regulated PDGF-B expression in both TC/siVEGF7-1 and HEK293 cells. In contrast, down-regulating SDF-1α, down-regulated PDGF-B. We cloned the 2 kb pdgf-b promoter fragment into the pGL3 reporter vector and showed that SDF-1α induced pdgf-b promoter activity. We used chromatin immunoprecipitation (ChIP) and demonstrated that the ELK-1 transcription factor bound to the pdgf-b promoter in response to SDF-1α stimulation in both TC/siVEGF7-1 and HEK293 cells. We collected BMCs from the hind femurs of mice and cultured the cells in medium containing SDF-1α and PDGF-B and found that PDGFR-β+ BMCs differentiated into NG2 and desmin positive pericytes in vitro. In contrast, inhibiting SDF-1α and PDGF-B abolished this differentiation process. In vivo, we injected TC71 or A4573 tumor-bearing mice with the SDF-1α antagonist, AMD3100 and found that inhibiting SDF-1α signaling in the tumor microenvironment decreased the tumor microvessel density, decreased the tumor blood vessel perfusion and, increased tumor cell apoptosis. We then analyzed the effect of AMD3100 on vasculogenesis of Ewing’s sarcoma and found that BMCs migrated to the tumor site where they differentiated into ECs but, they did not form thick perivascular layers of NG2 and desmin positive pericytes. Finally, we stained the AMD3100-treated tumors for PDGF-B and showed that inhibiting SDF-1α signaling also inhibited PDGF-B expression. All together, these findings demonstrated that the SDF-1α/PDGF-B pathway plays a critical role in the formation of BM-derived pericytes during vasculogenesis of Ewing’s sarcoma tumors.
Resumo:
The mitotic kinase Aurora B plays a pivotal role in mitosis and cytokinesis and governs the spindle assembly checkpoint which ensures correct chromosome segregation and normal progression through mitosis. Aurora B is overexpressed in breast and other cancers and may be an important molecular target for chemotherapy. Tumor suppressor p53 is the guardian of the genome and an important negative regulator of the cell cycle. Previously, it was unknown whether Aurora B and p53 had mutual regulation during the cell cycle. A small molecule specific inhibitor of Aurora B, AZD1152, gave us an indication that Aurora B negatively impacted p53 during interphase and mitosis. Here, we show the antineoplastic activity of AZD1152 in six human breast cancer cell lines, three of which overexpress HER2. AZD1152 specifically inhibited Aurora B kinase activity, thereby causing mitotic catastrophe, polyploidy and apoptosis, which in turn led to apoptotic death. Further, AZD1152 administration efficiently suppressed tumor growth in orthotopic and metastatic breast cancer cell xenograft models. Notably, it was found that the protein level of Aurora B kinase declined after inhibition of Aurora B kinase activity. Investigation of the underlying mechanism suggested that AZD1152 accelerated the protein turnover of Aurora B by enhancing its ubiquitination. As a consequence of inhibition of Aurora B, p53 levels were increased in tissue culture and murine models. This hinted at a possible direct interaction between p53 and Aurora B. Indeed, it was found that p53 and Aurora B exist in complex and interact directly during interphase and at the centromere in mitosis. Further, Aurora B was shown to phosphorylate p53 at several serine/threonine residues in the DNA binding domain and these events caused downregulation of p53 levels via ubiquitination mediated by Mdm2. Importantly, phosphorylation of threonine 211 was shown to reduce p53’s transcriptional activity while other phosphorylation sites did not. On a functional level, Aurora B was shown to reduce p53’s capacity to mediate apoptosis in response to the DNA damaging agent, cisplatin. These results define a novel mechanism for p53 inactivation by Aurora B and imply that oncogenic hyperactivation or overexpression of Aurora B may compromise p53’s tumor suppressor function.
Resumo:
Calcium ionophore, ionomycin, and phorbol myristate acetate (PMA) were used to activate rabbit peripheral blood B cells to study the role of increased intracellular calcium ion concentration ( (Ca$\sp2+\rbrack\sb{\rm i}$), protein kinase C (PKC) activation, and autocrine interleukin (IL-2) in inducing cell cycle entry and maintaining activation to DNA synthesis. When stimulated with a combination of ionomycin and PMA the B cells produced a soluble factor that supported the IL-2 dependent cell line, CTLL-2. The identity of the factor was established as IL-2 and its source was proved to be B cells in further experiments. Absorption studies and limiting dilution analysis indicated that IL-2 produced by B cells can act as an autocrine growth factor. Next, the effect of complete and incomplete signalling on B lymphocyte activation leading to cell cycle entry, IL-2 production, functional IL-2 receptor (IL-2R) expression, and DNA synthesis was examined. It was observed that cell cycle entry could be induced by signals provided by each reagent alone, but IL-2 production, IL-2R expression, and progression to DNA synthesis required activation with both reagents. Incomplete activation with ionomycin or PMA alone altered the responsiveness of B cells to further stimulation only in the case of ionomycin, and the unresponsiveness of these cells was apparently due to a lack of functional IL-2R expression on these cells, even though IL-2 production was maintained. The requirement of IL-2 for maintenance of activation to DNA synthesis was then investigated. The hypothesis that IL-2, acts in late G$\sb1$ and is required for DNA synthesis in B cells was supported by comparing IL-2 production and DNA synthesis in peripheral blood cells and purified B cells, kinetic analysis of these events in B cells, effects of anti-IL-2 antibody and PKC inhibitors, and by the response of G$\sb1$ B cells. Additional signals transduced by the interaction of autocrine IL-2 and functional IL-2 receptor on rabbit B cells were found to be necessary to drive these cells to S phase, after initial activation caused by simultaneous increase in (Ca$\sp2+\rbrack\sb{\rm i}$ and PKC activation had induced cell cycle entry, IL-2 production, and functional IL-2 receptor expression. ^
Resumo:
We have shown that liposomal amphotericin B (L-AmpB) decreased renal toxicity and maintains the antifungal activity of amphotericin B (AmpB). We have also observed that L-AmpB is predominantly associated with high density lipoproteins (HDL) as compared to Fungizone (AmpB + deoxycholate). The present experiments were designed to assess the biological relevance of transferring AmpB to HDL. We observed that AmpB was less toxic to kidney cells when associated with HDL, however AmpB toxicity was maintained when associated with LDL. To further understand how HDL-associated AmpB reduces renal cell toxicity the presence of HDL and LDL receptors in this cell line was determined. We observed that these cells expressed high and low affinity LDL receptors, but only low affinity HDL receptors. The reduced renal cell toxicity of HDL-associated AmpB may be due to its lack of interaction with renal cells because of the absence of HDL receptors. Since AmpB interacts with cholesteryl esters whose transfer among lipoproteins is regulated by Lipid transfer Protein (LTP), the role of LTP on the distribution of AmpB to HDL and LDL was next examined. We found that negatively charged liposomes significantly reduced LTP-mediated transfer of CE between HDL and LDL, independent of the presence of AmpB, while Fungizone only significantly inhibited CE transfer at one concentration tested (20$\mu$g/ml). Therefore, we believe that the decreased renal toxicity of L-AmpB is related to its predominant distribution to HDL which is regulated by the inhibition of LTP activity. ^
Resumo:
I studied the apolipoprotein (apo) B 3$\sp\prime$ variable number tandem repeat (VNTR) and did computer simulations of the stepwise mutation model to address four questions: (1) How did the apo B VNTR originate? (2) What is the mutational mechanism of repeat number change at the apo B VNTR? (3) To what extent are population and molecular level events responsible for the determination of the contemporary apo B allele frequency distribution? (4) Can VNTR allele frequency distributions be explained by a simple and conservative mutation-drift model? I used three general approaches to address these questions: (1) I characterized the apo B VNTR region in non-human primate species; (2) I constructed haplotypes of polymorphic markers flanking the apo B VNTR in a sample of individuals from Lorrain, France and studied the associations between the flanking-marker haplotypes and apo B VNTR size; (3) I did computer simulations of the one-step stepwise mutation model and compared the results to real data in terms of four allele frequency distribution characteristics.^ The results of this work have allowed me to conclude that the apo B VNTR originated after an initial duplication of a sequence which is still present as a single copy sequence in New World monkey species. I conclude that this locus did not originate by the transposition of an array of repeats from somewhere else in the genome. It is unlikely that recombination is the primary mutational mechanism. Furthermore, the clustered nature of these associations implicates a stepwise mutational mechanism. From the high frequencies of certain haplotype-allele size combinations, it is evident that population level events have also been important in the determination of the apo B VNTR allele frequency distribution. Results from computer simulations of the one-step stepwise mutation model have allowed me to conclude that bimodal and multimodal allele frequency distributions are not unexpected at loci evolving via stepwise mutation mechanisms. Short tandem repeat loci fit the stepwise mutation model best, followed by microsatellite loci. I therefore conclude that there are differences in the mutational mechanisms of VNTR loci as classed by repeat unit size. (Abstract shortened by UMI.) ^
Resumo:
Any functionally important mutation is embedded in an evolutionary matrix of other mutations. Cladistic analysis, based on this, is a method of investigating gene effects using a haplotype phylogeny to define a set of tests which localize causal mutations to branches of the phylogeny. Previous implementations of cladistic analysis have not addressed the issue of analyzing data from related individuals, though in human studies, family data are usually needed to obtain unambiguous haplotypes. In this study, a method of cladistic analysis is described in which haplotype effects are parameterized in a linear model which accounts for familial correlations. The method was used to study the effect of apolipoprotein (Apo) B gene variation on total-, LDL-, and HDL-cholesterol, triglyceride, and Apo B levels in 121 French families. Five polymorphisms defined Apo B haplotypes: the signal peptide Insertion/deletion, Bsp 1286I, XbaI, MspI, and EcoRI. Eleven haplotypes were found, and a haplotype phylogeny was constructed and used to define a set of tests of haplotype effects on lipid and apo B levels.^ This new method of cladistic analysis, the parametric method, found significant effects for single haplotypes for all variables. For HDL-cholesterol, 3 clusters of evolutionarily-related haplotypes affecting levels were found. Haplotype effects accounted for about 10% of the genetic variance of triglyceride and HDL-cholesterol levels. The results of the parametric method were compared to those of a method of cladistic analysis based on permutational testing. The permutational method detected fewer haplotype effects, even when modified to account for correlations within families. Simulation studies exploring these differences found evidence of systematic errors in the permutational method due to the process by which haplotype groups were selected for testing.^ The applicability of cladistic analysis to human data was shown. The parametric method is suggested as an improvement over the permutational method. This study has identified candidate haplotypes for sequence comparisons in order to locate the functional mutations in the Apo B gene which may influence plasma lipid levels. ^
Resumo:
Heparan sulfate proteoglycans and their corresponding binding sites have been suggested to play an important role during the initial attachment of blastocysts to uterine epithelium and human trophoblastic cell lines to uterine epithelial cell lines. Previous studies on RL95 cells, a human uterine epithelial cell line, characterized a single class of cell surface heparin/heparan sulfate (HP/HS)-binding sites. Three major HP/HS-binding peptide fragments were isolated from RL95 cell surfaces by tryptic digestion and partial amino-terminal amino acid sequence from each peptide fragment was obtained. In the current study, using the approaches of reverse transcription-polymerase chain reaction and cDNA library screening, a novel cell surface $\rm\underline{H}$P/HS $\rm\underline{i}$nteracting $\rm\underline{p}$rotein (HIP) has been isolated from RL95 cells. The full-length cDNA of HIP encodes a protein of 259 amino acids with a calculated molecular weight of 17,754 Da and pI of 11.75. Transfection of HIP cDNA into NIH-3T3 cells demonstrated cell surface expression and a size similar to that of HIP expressed by human cells. Predicted amino acid sequence indicates that HIP lacks a membrane spanning region and has no consensus sites for glycosylation. Northern blot analysis detected a single transcript of 1.3 kb in both total RNA and poly(A$\sp+$) RNA. Examination of human cell lines and normal tissues using both Northern blot and Western blot analysis revealed that HIP is differentially expressed in a variety of human cell lines and normal tissues, but absent in some cell lines examined. HIP has about 80% homology, at the level of both mRNA and protein, to a rodent protein, designated as ribosomal protein L29. Thus, members of the L29 family may be displayed on cell surfaces where they participate in HP/HS binding events. Studies on a synthetic peptide derived from HIP demonstrate that HIP peptide binds HS/HP with high selectivity and has high affinity (Kd = 10 nM) for a subset of polysaccharides found in commercial HIP preparations. Moreover, HIP peptide also binds certain forms of cell surface, but not secreted or intracellular. HS expressed by RL95 and JAR cells. This peptide supports the attachment of several human trophoblastic cell lines and a variety of mammalian adherent cell lines in a HS-dependent fashion. Furthermore, studies on the subset of HP specifically recognized by HIP peptide indicate that this high-affinity HP (HA-HP) has a larger median MW and a greater negative charge density than bulk HP. The minimum size of oligosaccharide required to bind to HIP peptide with high affinity is a septa- or octasaccharide. HA-HP also quantitatively binds to antithrombin-III (AT-III) with high affinity, indicating that HIP peptide and AT-III may recognize the same or similar oligosaccharide structure(s). Furthermore, HIP peptide antagonizes HP action and promotes blood coagulation in both factor Xa- and thrombin-dependent assays. Finally, HA-HP recognized by HP peptide is highly enriched with anticoagulant activity relative to bulk HP. Collectively, these results demonstrate that HIP may play a role in the HP/HS-involved cell-cell and cell-matrix interactions and recognizes a motif in HP similar or identical to that recognized by AT-III and therefore, may modulate blood coagulation. ^
Resumo:
An important question in biology is to understand the role of specific gene products in regulating embryogenesis and cellular differentiation. Many of the regulatory proteins possess specific motifs, such as the homeodomain, basic helix-loop-helix structure, zinc finger, and leucine zipper. These sequence motifs participate in specific protein-DNA, protein-RNA, and protein-protein interactions, and are important for the function of these regulatory proteins.^ The human rfp (ret finger protein) belongs to a novel zinc finger protein family, the B box zinc finger family. Most of the B box proteins, including rfp, have a conserved tripartite motif, consisting of two novel zinc fingers (the RING finger and the B box) and a coiled-coil domain. Interestingly, a fusion protein between the tripartite motif of rfp and the tyrosine kinase domain of c-ret has transforming activity. In this study, we examined the expression of rfp during mouse development, and characterized the role of the tripartite motif in rfp function.^ We cloned the mouse rfp cDNA, which shares a 98.4% homology with the human sequence at amino acid level. Such strikingly high degree of homology indicates the high evolutionary pressure on the conservation of the sequence, suggesting that rfp may have an important function. Using the somatic cell hybrid system, we assigned the rfp gene to mouse chromosome 13 and human chromosome 6. Rfp transcripts and protein were ubiquitous in day 10.5-13.5 mouse embryos; however, they were restricted in adult mice, with the highest level of expression in the testis. Rfp expression in the testis is detected only in late pachytene spermatocytes and round spermatids. In both embryos and spermatogenic cells, rfp protein was distributed within cell nuclei in a punctate pattern, similar to the PODs (PML oncogenic domains) observed with another B box protein, PML. In cultured mammalian cells, we found that rfp was indeed co-localized to the PODs with PML. Using the yeast two-hybrid system, we showed that the rfp could specifically interact with PML, and that the interaction was dependent on the distal portion of the rfp coiled-coil domain.^ We also showed that rfp could form homodimers, and both the B box and coiled-coil domain were required for proper dimerization. It seems that the proximal portion of the coiled-coil domain provides the interacting interface, while the B box zinc finger orients the coil and maintains the correct structure of the whole molecule. Our data are consistent with the zinc-binding property and structural analysis of the B box. The RING finger seems to be involved in rfp nuclear localization through interaction with other proteins. We believe that homodimerization and interaction with PML are important for the normal interaction of rfp during development and differentiation. In addition, rfp homodimerization may also be essential for the oncogenic activation of the rfp-ret fusion protein. ^