34 resultados para Tuberculosis, Glandular.
Resumo:
Introduction: Tuberculosis (TB) is a global health concern with one-third of the world’s population infected. With the goal of eliminating TB, a component of appropriate management of the disease is ensuring baccalaureate nursing students receive current and consistent TB education. [See PDF for complete abstract]
Resumo:
Tuberculosis remains a major threat as drug resistance continues to increase. Pulmonary tuberculosis in adults is responsible for 80% of clinical cases and nearly 100% of transmission of infection. Unfortunately, since we have no animal models of adult type pulmonary tuberculosis, the most important type of disease remains largely out of reach of modern science and many fundamental questions remain unanswered. This paper reviews research dating back to the 1950's providing compelling evidence that cord factor (trehalose 6,6 dimycolate [TDM]) is essential for understanding tuberculosis. However, the original papers by Bloch and Noll were too far ahead of their time to have immediate impact. We can now recognize that the physical and biologic properties of cord factor are unprecedented in science, especially its ability to switch between two sets of biologic activities with changes in conformation. While TDM remains on organisms, it protects them from killing within macrophages, reduces antibiotic effectiveness and inhibits the stimulation of protective immune responses. If it comes off organisms and associates with lipid, TDM becomes a driver of tissue damage and necrosis. Studies emanating from cord factor research have produced (1) a rationale for improving vaccines, (2) an approach to new drugs that overcome natural resistance to antibiotics, (3) models of caseating granulomas that reproduce multiple manifestations of human tuberculosis. (4) evidence that TDM is a key T cell antigen in destructive lesions of tuberculosis, and (5) a new understanding of the pathology and pathogenesis of postprimary tuberculosis that can guide more informative studies of long standing mysteries of tuberculosis.
Resumo:
Mycobacterium tuberculosis (Mtb) replicates within the human macrophages and we investigated the activating effects of retinoic acid (RA) and vitamin D3 (VD) on macrophages in relation to the viability of Mtb. A combination of these vitamins (RAVD) enhanced the receptors on THP-1 macrophage (Mannose receptor and DC-SIGN) that increased mycobacterial uptake but inhibited thesubsequent intracellular growth of Mtb by inducing reactive oxygen species (ROS) and autophagy. RAVD also enhanced antigen presenting and homing receptors in THPs that suggested an activated phenotype for THPs following RAVD treatment. RAVD mediated activation was also associated with a marked phenotypic change in Mtb infected THPs that fused with adjacent cells to formmultinucleate giant cells (MNGCs). Typically MNGCs occurred over 30 days of in vitro culture and contained non-replicating persisting Mtb for as long as 60 days in culture. We propose that the RAVD mediated inhibition of replicating Mtb leading to persistence of non-replicating Mtb within THPs may provide a novel human macrophage model simulating formation of MNGCs in humanlungs.
Resumo:
The most common test to identify latent tuberculosis is the tuberculin skin test that detects T cell responses of delayed type hypersensitivity type IV. Since it produces false negative reactions in active tuberculosis or in high-risk persons exposed to tuberculosis patients as shown in this report, we studied antibody profiles to explain the anergy of such responses in high-risk individuals without active infection. Our results showed that humoral immunity against tuberculin, regardless of the result of the tuberculin skin test is important for protection from active tuberculosis and that the presence of high antibody titers is a more reliable indicator of infection latency suggesting that latency can be based on the levels of antibodies together with in vitro proliferation of peripheral blood mononuclear cells in the presence of the purified protein derivative. Importantly, anti-tuberculin IgG antibody levels mediate the anergy described herein, which could also prevent reactivation of disease in high-risk individuals with high antibody titers. Such anti-tuberculin IgG antibodies were also found associated with blocking and/or stimulation of in vitro cultures of PBMC with tuberculin. In this regard, future studies need to establish if immune responses to Mycobacterium tuberculosis can generate a broad spectrum of reactions either toward Th1 responses favoring stimulation by cytokines or by antibodies and those toward diminished responses by Th2 cytokines or blocking by antibodies; possibly involving mechanisms of antibody dependent protection from Mtb by different subclasses of IgG.
Resumo:
Postprimary tuberculosis occurs in immunocompetent people infected with Mycobacterium tuberculosis. It is restricted to the lung and accounts for 80% of cases and nearly 100% of transmission. Little is known about the immunopathology of postprimary tuberculosis due to limited availability of specimens. Tissues from 30 autopsy cases of pulmonary tuberculosis were located. Sections of characteristic lesions of caseating granulomas, lipid pneumonia, and cavitary stages of postprimary disease were selected for immunohistochemical studies of macrophages, lymphocytes, endothelial cells, and mycobacterial antigens. A higher percentage of cells in lipid pneumonia (36.1%) and cavitary lesions (27.8%) were positive for the dendritic cell marker DEC-205, compared to granulomas (9.0%, P < .05). Cavities contained significantly more T-regulatory cells (14.8%) than found in lipid pneumonia (5.2%) or granulomas (4.8%). Distribution of the immune cell types may contribute to the inability of the immune system to eradicate tuberculosis.
Resumo:
Tuberculosis (TB) remains a major public health burden. The immunocompetant host responds to Mycobacterium tuberculosis (MTB) infection by the formation of granulomas, which initially prevent uncontrolled bacterial proliferation and dissemination. However, increasing evidence suggests that granuloma formation promotes persistence of the organism by physically separating infected cells from effector lymphocytes and by inducing a state of non-replicating persistence in the bacilli, making them resistant to the action of antibiotics. Additionally, immune-mediated tissue destruction likely facilitates disease transmission. The granulomatous response is in part due to mycobacterial glycolipid antigens. Therefore, studies were first undertaken to determine the innate mechanisms of mycobacterial cord factor trehalose-6’6-dimycolate (TDM) on granuloma formation. Investigations using knock-out mice suggest that TNF-a is involved in the initiation of the granulomatous response, complement factor C5a generates granuloma cohesiveness, and IL-6 is necessary for maintenance of an established granulomatous responses. Studies were next performed to determine the ability of lactoferrin to modulate the immune response and pathology to mycobacterial cord factor. Lactoferrin is an iron-binding glycoprotein with immunomodulatory properties that decrease tissue damage and promote Th1 responses. Mice challenged with TDM and treated with lactoferrin had decreased size and numbers of granulomas at the peak of the granulomatous response, accompanied by increased IL-10 and TGF-b production. Finally, the ability of lactoferrin to serve as a novel therapeutic for the treatment of TB was performed by aerosol challenging mice with MTB and treating them with lactoferrin added to the drinking water. Mice given tap water had lung log10 CFUs of 7.5 ± 0.3 at week 3 post-infection. Lung CFUs were significantly decreased in mice given lactoferrin starting the day of infection (6.4 ± 0.7) and mice started therapeutically on lactoferrin at day 7 after established infection (6.5 ± 0.4). Total lung inflammation in lactoferrin treated mice was significantly decreased, with fewer areas of macrophages, increased total lymphocytes, and increased numbers of CD4+ and CD8+ cells. The lungs of lactoferrin treated mice had increased CD4+ IFN-g+ cells and IL-17 producing cells on ELISpot analysis. It is hypothesized that lactoferrin decreases bacterial burden during MTB infection by early induction of Th1 responses.
Resumo:
Objective. To investigate the association of the three major genetic groups of Mycobacterium tuberculosis with pulmonary and extra-pulmonary tuberculosis in clustered and non-clustered TB cases in the Houston area. ^ Study design. Secondary analysis of an ambi-directional study. ^ Study population. Three hundred fifty-eight confirmed cases of tuberculosis in the Houston that occurred between October 1995 and May 1997, who had been interviewed by the Houston T13 Initiative staff at Baylor College of Medicine, and whose isolates have had their DNA fingerprint and genetic group determined. ^ Exclusions. Individuals whose mycobacterial genotype was unknown, or whose data variables were unavailable. ^ Source of data. Laboratory results, patient interviews, and medical records at clinics and hospitals of the study population. ^ Results. In clustered cases, the majority of both, pulmonary and extra-pulmonary TB cases were caused by genetic group 1. Independent factors were assessed to determine the interactions that may influence the site of infection or increase the risk for one site or another. HIV negative males were protected against extra-pulmonary TB compared to HIV negative females. Individuals ages 1–14 years were at higher risk of having extra-pulmonary TB. Group 3 organisms were found less frequently in the total population in general, especially in extra-pulmonary disease. This supports the evidence in previous studies that this group is the least virulent and genetically distinct from the other two groups. Group 1 was found more frequently among African Americans than other ethnic groups, a trend for future investigations. ^ Among the non-clustered cases, group 2 organisms were the majority of the organisms found in both sites. They were also the majority of organisms found in African Americans, Caucasians, and Hispanics causing the majority of the infections at both sites. However, group 1 organisms were the overwhelming majority found in Asian/Pacific Islander individuals, which may indicate these organisms are either endemic to that area, or that there is an ethnic biological factor involved. This may also be due to a systematic bias, since isolates from individuals from that geographic region lack adequate copies of the insertion sequence IS6110, which leads to their placement in the non-clustered population. ^ The three genetic groups of Mycobacterium tuberculosis were not found equally distributed between sites of infection in both clustered and non-clustered cases. Furthermore, these groups were not distributed in the same patterns among the clustered and non-clustered cases, but rather in distinct patterns. ^
Resumo:
Mycobacterium tuberculosis infects more people worldwide each year than any other single organism. The Antigen 85 Complex, a family of fibronectin-binding proteins (Fbps) found in several species of mycobacteria and possibly involved in host interaction, is considered among the putative virulence factors of M. tuberculosis. These proteins are implicated in the production of trehalose dimycolate (TDM) and arabinogalactan-mycolate (AG-M), two prominent components of the mycobacterium cell wall and potent modulators of the immune system during infection. For these reasons, the principal members of the complex, FbpA and FbpB, were the focus of these studies. The genes encoding these proteins, fbpA and fbpB, were each disrupted by insertion of a kanamycin resistance cassette in a pathogenic strain of M. tuberculosis, H37Rv. Neither mutation affected growth in routine broth culture. Thin layer chromatography analysis of TDM and AG-M showed no difference in content between the parent strain H37Rv and the FbpA- and FbpB-deficient mutants grown under two different culture conditions. However, metabolic radiolabeling of the strains showed that the production of TDM (but not its precursor TMM) was delayed in the FbpA- and FbpB-deficient mutants compared to the parent H37Rv. During this same labeling period, FbpA-deficient mutant LAa1 failed to produce AG-M and in the FpbB-deficient mutant LAb1 production was decreased. In macrophage tissue culture assay, LAa1 failed to multiply when bacteria in early log phase were used to infect monolayers while LAb1 grew like the parent strain. The growth deficiency of LAa1 as well as the deficiencies in TDM and AG-M production were restored by complementing LAa1 with a functional fbpA gene. These results suggest that the FbpA and FbpB proteins are involved in synthesis of TDM (but not its precursor TMM) as well as AG-M. Other members of the complex appear to compensate for defects in synthesis caused by mutation of single genes in the complex over time. Mutation of the FbpA gene causes greater in vivo effect than mutation of the FbpB gene despite very similar deficiencies in the rate of production of mycolate containing molecules on the cell surface. ^
Resumo:
Objective. To determine the prevalence and factors associated with diabetes in tuberculosis patients in Harris County, Texas. ^ Background. Tuberculosis and diabetes mellitus are two diseases of immense public health significance. Various epidemiologic studies have established an association between the two conditions. While many studies have identified factors associated with the conditions individually, few have looked at factors associated with their co-occurrence particularly in the United States. Furthermore, most of those studies are hospital-based and may not be representative of the population. The aim of this study was to determine the prevalence and distribution of diabetes among tuberculosis patients in Harris County, Texas and to identify the factors associated with diabetes in tuberculosis. ^ Methods. A population-based case control study was performed using secondary data from the Houston Tuberculosis Initiative (HTI) collected from October 1995 to September 2004. Socio-demographic characteristics and clinical variables were compared between tuberculosis patients with diabetes and non-diabetic tuberculosis patients. Logistic regression analysis was performed to identify associations. Survival at 180 days post tuberculosis diagnosis was assessed by Cox regression. ^ Results. The prevalence of diabetes among the tuberculosis (TB) population was 14.4%. The diabetics (cases) with a mean age 53 ± 13.3 years were older than the non-diabetics (controls) with a mean age of 39 ± 18.5 years (p<0.001). Socio-demographic variables that were independently associated with the risk of diabetes were age (OR 1.04, p<0.001) and Hispanic ethnicity (OR 2.04, p<0.001). Diabetes was associated with an increased risk of pulmonary tuberculosis disease (OR 1.33, p<0.028). Among individuals with pulmonary TB, diabetes was associated with positive sputum acid-fast bacilli (AFB) smear (OR 1.47, p<0.005) and culture (OR 1.83, p<0.018). Diabetics were more likely to have cavitary lung disease than non-diabetics (OR 1.50, p<0.002). After adjustment for age and HIV status, the risk of dying within 180 days of TB diagnosis was significantly increased in the diabetics (HR 1.51, p<0.002). ^ Conclusion. Diabetes mellitus was more prevalent in our tuberculosis patients than in the general population. The tuberculous diabetic may be more infectious and has a higher risk of death. It is therefore imperative to screen diabetics for TB and TB patients for diabetes. ^
Resumo:
Background. The population-based Houston Tuberculosis Initiative (HTI) study has enrolled and gathered demographic, social, behavioral, and disease related data on more than 80% of all reported Mycobacterium Tuberculosis (MTB) cases and 90% of all culture positive patients in Houston/Harris County over a 9 year period (from October 1995-September 2004). During this time period 33% (n=1210) of HTI MTB cases have reported a history of drug use. Of those MTB cases reporting a history of drug use, a majority of them (73.6%), are non-injection drug users (NIDUs). ^ Other than HIV, drug use is the single most important risk factor for progression from latent to infectious tuberculosis (TB). In addition, drug use is associated with increased transmission of active TB, as seen by the increased number of clonally related strains or clusters (see definition on page 30) found in this population. The deregulatory effects of drug use on immune function are well documented. Associations between drug use and increased morbidity have been reported since the late 1970's. However, limited research focused on the immunological consequence of non-injection drug use and its relation to tuberculosis infection among TB patients is available. ^ Methods. TB transmission patterns, symptoms, and prevalence of co-morbidities were a focus of this project. Smoking is known to suppress Nitric Oxide (NO) production and interfere with immune function. In order to limit any possible confounding due to smoking two separate analyses were done. Non-injection drug user smokers (NIDU-S) were compared to non-drug user smokers (NDU-S) and non-injection drug user non-smokers (NIDU-NS) were compared to non-drug user non-smokers (NDU-NS) individually. Specifically proportions, chi-square p-values, and (where appropriate) odds ratios with 95% confidence intervals were calculated to assess characteristics and potential associations of co-morbidities and symptoms of TB among NIDUs HTI TB cases. ^ Results. Significant differences in demographic characteristics and risk factors were found. In addition drug users were found to have a decreased risk for cancer, diabetes mellitus, and chronic pulmonary disease. They were at increased risk of having HIV/AIDS diagnosis, liver disease, and trauma related morbidities. Drug users were more likely to have pulmonary TB disease, and a significantly increased amount of clonally related strains of TB or "clusters" were seen in both smokers and non-smoker drug users when compared to their non-drug user counterparts. Drug users are more likely to belong to print groups (clonally related TB strains with matching spoligotypes) including print one and print three and the Beijing family group, s1. Drug users were found to be no more likely to experience drug resistance to TB therapy and were likely to be cured of disease upon completion of therapy. ^ Conclusion. Drug users demographic and behavioral risk factors put them at an increased risk contracting and spreading TB disease throughout the community. Their increased levels of clustering are evidence of recent transmission and the significance of certain print groups among this population indicate the transmission is from within the social family. For these reasons a focus on this "at risk population" is critical to the success of future public health interventions. Successful completion of directly observed therapy (DOT), the tracking of TB outbreaks and incidence through molecular characterization, and increased diagnostic strategies have led to the stabilization of TB incidence in Houston, Harris County over the past 9 years and proven that the Houston Tuberculosis Initiative has played a critical role in the control and prevention of TB transmission. ^
Resumo:
Mycobacterium tuberculosis, a bacillus known to cause disease in humans since ancient times, is the etiological agent of tuberculosis (TB). The infection is primarily pulmonary, although other organs may also be affected. The prevalence of pulmonary TB disease in the US is highest along the US-Mexico border, and of the four US states bordering Mexico, Texas had the second highest percentage of cases of TB disease among Mexico-born individuals in 1999 (CDC, 2001). Between the years of 1993 and 1998, the prevalence of drug-resistant (DR) TB was 9.1% among Mexican-born individuals and 4.4% among US-born individuals (CDC, 2001). In the same time period, the prevalence of multi-drug resistant (MDR) TB was 1.4% among Mexican-born individuals and 0.6% among US-born individuals (CDC, 2001). There is a renewed urgency in the quest for faster and more effective screening, diagnosis, and treatment methods for TB due to the resurgence of tuberculosis in the US during the mid-1980s and early 1990s (CDC, 2007a), and the emergence of drug-resistant, multidrug-resistant, and extremely drug-resistant tuberculosis worldwide. Failure to identify DR and MDR-TB quickly leads to poorer treatment outcomes (CDC, 2007b). The recent rise in TB/HIV comorbidity further complicates TB control efforts. The gold standard for identification of DR-TB requires mycobacterial growth in culture, a technique taking up to three weeks, during which time DR/MDR-TB individuals harboring resistant organisms may be receiving inappropriate treatment. The goal of this study was to determine the sensitivity and specificity of real-time quantitative polymerase chain reaction (qPCR) using molecular beacons in the Texas population. qPCR using molecular beacons is a novel approach to detect mycobacterial mutations conferring drug resistance. This technique is time-efficient and has been shown to have high sensitivity and specificity in several populations worldwide. Rifampin (RIF) susceptibility was chosen as the test parameter because strains of M. tuberculosis which are resistant to RIF are likely to also be MDR. Due to its status as a point of entry for many immigrants into the US, control efforts against TB and drug-resistant TB in Texas is a vital component of prevention efforts in the US as a whole. We show that qPCR using molecular beacons has high sensitivity and specificity when compared with culture (94% and 87%, respectively) and DNA sequencing (90% and 96%, respectively). We also used receiver operator curve analysis to calculate cutoff values for the objective determination of results obtained by qPCR using molecular beacons. ^
Resumo:
Tuberculosis remains one of the leading causes of death in man due to a single infectious agent. An estimated one-third of the world's population is infected with the causative agent, Mycobacterium tuberculosis (Mtb), despite the availability of the widely used vaccine, BCG. BCG has significantly varying protection rates with the lowest level of protection seen with the most common form of TB, adult pulmonary TB. Thus, numerous studies are being conducted to develop a more efficient vaccine. The ideal candidate vaccine would possess the ability to induce a solid and strong Th1 response, as this is the subset of T cells primarily involved in clearance of the infection. A novel vaccine should also induce such a response that may be recalled and expanded upon subsequent infection. Our group has introduced a mutant of a virulent strain of Mtb which lacks a component of the immunogenic antigen 85 complex (Ag85). Our vaccine, ΔfbpA, does not secrete the fibronectin binding protein Ag85A, and this has shown to lead to its attenuation in both murine macrophages and mice. Previous studies have also proven that ΔfbpA is more protective in mice than BCG against virulent aerosol challenge with Mtb. This study addresses the mechanisms of protection observed with ΔfbpA by phenotyping responding T cells. We first evaluated the ability of dendritic cells to present the mycobacteria to naïve T cells, an in vitro mock of primary immunization. We also measured the response of primed T cells to macrophage-presented mycobacteria to interpret the possible response of a vaccinated host to a boost. We concluded that ΔfbpA can elicit a stronger Th1 response compared to BCG in vitro, and further observed that this enhanced response is at least partly due to the presence of proteins encoded by a region of the genome absent in all strains of BCG. Finally, we observed this heightened Th1 response in the mouse model after primary vaccination and a virulent aerosol challenge. The cytolytic T cell response was also measured after virulent challenge and was found to be superior in the ΔfbpA-treated group when compared to the BCG group. ^
Resumo:
Vietnam is one of the countries with the highest prevalence and incidence of tuberculosis (TB) in the world (1). Although Vietnam has had many successes in TB control, it still faces the challenge of drug resistant and multidrug-resistant tuberculosis (MDR-TB). MDR-TB appears to be relatively stable, but data on MDR-TB continues to be scarce and routine testing of all isolates for drug susceptibility is not performed under Vietnam's National Tuberculosis Program (6). Pham Ngoc Thach Hospital (PNT), the leading tuberculosis and lung disease hospital in Ho Chi Minh City, serves as a reference hospital and laboratory for both Ho Chi Minh City and the Southern Vietnam region. This study is an unmatched, nested case-control study consisting of a secondary analysis of a previously created dataset composed of drug susceptibility and basic demographic data from a cohort of patients diagnosed with tuberculosis at PNT from 2003 through 2007 in order to calculate the prevalence of resistance among acid-fast bacilli smear-positive patients. The susceptibility records for the years 2003-2004 were not representative of the entire population, but over the years 2005-2007 the investigator found a decrease in resistance to all primary TB drugs on which records were available, as well as MDR-TB. Overall, females showed a higher proportion of resistance to TB drugs than males, and females had a greater likelihood of presenting with MDR-TB than males (OR=1.77). Persons 35-54 had greater likelihood of having MDR-TB than younger and older age groups. Among the population with HIV data, HIV-positivity was associated with greater likelihood of MDR-TB (OR=1.70, 95% CI=0.97-3.11). This study shows that rates of TB drug resistance are high, but declining, in one of Vietnam's largest TB hospitals, and that females and HIV-positive individuals are possible high-risk groups in this population.^
Resumo:
The survival of Mycobacterium tuberculosis (MTB) in macrophages largely plays upon its ability to manipulate the host immune response to its benefit. Trehalose 6,6'-dimycolate (TDM) is a glycolipid found abundantly on the surface of MTB. Preliminary studies have shown that MTB lacking TDM have a lower survival rate compared to wild-type MTB in infection experiments, and that lysosomal colocalization with the phagosome occurs more readily in delipidated MTB infections. The purpose of this dissertation is to identify the possible mechanistic roles of TDM and its importance to the survival of MTB in macrophages. Our hypothesis is that TDM promotes the survival of MTB by targeting specific immune functions in host macrophages. Our first specific aim is to evaluate the effects of TDM on MTB in surface marker expression and antigen presentation in macrophages. We characterized the surface marker response in murine macrophages infected with either TDM-intact or TDM-removed MTB. We found that the presence of TDM on MTB inhibited the expression of surface markers which are important for antigen presentation and costimulation to T cells. Then we measured and compared the ability of macrophages infected by MTB with or without TDM to present Antigen 85B to hybridoma T cells. Macrophages infected with TDM-intact MTB were found to be less efficient at antigen presentation than TDM-removed MTB. Our second aim is to identify molecular mechanisms which may be targeted by TDM to promote MTB survival in macrophages. We measured macrophage responsiveness to IFN-γ before or after MTB infection and correlated SOCS production to the presence of TDM on MTB. Macrophages infected with TDM-intact MTB were found to be less responsive to IFN-γ. This may be attributed to the TDM-driven production of SOCS, which was found to affect phosphorylation of the JAK-STAT signaling pathway. We also identified the importance of TLR2 and TLR4 in the initiation of SOCS by TDM-intact MTB in host macrophages. In conclusion, our studies reveal new insights into how TDM regulates macrophages and their immune functions to aid in the survival of MTB.^
Resumo:
Trehalose dimycolate (TDM) is a mycobacterial glycolipid that is released from the surface of virulent M. tuberculosis. We evaluated the rate of growth, colony characteristics and production of TDM by Mycobacterium tuberculosis strains isolated from different clinical sites. Since detergent removes TDM from organisms, we analyzed growth rate and colony morphology of 79 primary clinical isolates grown as pellicles on the surface of detergent free Middlebrook 7H9 media. The genotype of each had been previously characterized. TDM production was measured by thin layer chromatography on 32 of these isolates. We found that strains isolated from pulmonary sites produced large amounts of TDM, grew rapidly as thin spreading pellicles, showed early cording (<1 week) and climbed the sides of the dish. In contrast, the extrapulmonary isolates (lymph node and bone marrow) produced less TDM (p<0.01), grew as discrete patches with little tendency to spread or climb the walls (p<0.02). The Beijing pulmonary (BP) isolates produced more TDM than non Beijing pulmonary isolates. The largest differences were observed in Beijing strains. The Beijing pulmonary isolates produced more TDM and grew faster than the Beijing extrapulmonary isolates (p<0.01). This was true even when the pulmonary and extrapulmonary isolates were derived from the same clade. These growth characteristics were consistently observed only on the first passage after primary isolation. This suggests that the differences in growth rate and TDM production observed reflect differences in gene expression patterns of pulmonary and extrapulmonary infections, that Mycobacterium tuberculosis in the lung grows more rapidly and produces more TDM than it does in extrapulmonary sites. This provides new opportunities to investigate gene expression of Mycobacterium tuberculosis in human.^