23 resultados para Receptors, IgG


Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Renal involvement is a serious manifestation of systemic lupus erythematosus (SLE); it may portend a poor prognosis as it may lead to end-stage renal disease (ESRD). The purpose of this study was to determine the factors predicting the development of renal involvement and its progression to ESRD in a multi-ethnic SLE cohort (PROFILE). METHODS AND FINDINGS: PROFILE includes SLE patients from five different United States institutions. We examined at baseline the socioeconomic-demographic, clinical, and genetic variables associated with the development of renal involvement and its progression to ESRD by univariable and multivariable Cox proportional hazards regression analyses. Analyses of onset of renal involvement included only patients with renal involvement after SLE diagnosis (n = 229). Analyses of ESRD included all patients, regardless of whether renal involvement occurred before, at, or after SLE diagnosis (34 of 438 patients). In addition, we performed a multivariable logistic regression analysis of the variables associated with the development of renal involvement at any time during the course of SLE.In the time-dependent multivariable analysis, patients developing renal involvement were more likely to have more American College of Rheumatology criteria for SLE, and to be younger, hypertensive, and of African-American or Hispanic (from Texas) ethnicity. Alternative regression models were consistent with these results. In addition to greater accrued disease damage (renal damage excluded), younger age, and Hispanic ethnicity (from Texas), homozygosity for the valine allele of FcgammaRIIIa (FCGR3A*GG) was a significant predictor of ESRD. Results from the multivariable logistic regression model that included all cases of renal involvement were consistent with those from the Cox model. CONCLUSIONS: Fcgamma receptor genotype is a risk factor for progression of renal disease to ESRD. Since the frequency distribution of FCGR3A alleles does not vary significantly among the ethnic groups studied, the additional factors underlying the ethnic disparities in renal disease progression remain to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. METHODS: DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. RESULTS: Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. CONCLUSION: Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and contribute to the molecular carcinogenesis of OSCC. Differential expressions of TRAIL receptors in OSCC do not appear to play a crucial role in their apoptotic rate or metastatic progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-GM1 antibodies are present in some patients with autoimmune neurological disorders. These antibodies are most frequently associated with acute immune neuropathy called Guillain-Barré syndrome (GBS). Some clinical studies associate the presence of these antibodies with poor recovery in GBS. The patients with incomplete recovery have failure of nerve repair, particularly axon regeneration. Our previous work indicates that monoclonal antibodies can inhibit axon regeneration by engaging cell surface gangliosides (Lehmann et al., 2007). We asked whether passive transfer of human anti-GM1 antibodies from patients with GBS modulate axon regeneration in an animal model. Human anti-GM1 antibodies were compared with other GM1 ligands, cholera toxin B subunit and a monoclonal anti-GM1 antibody. Our results show that patient derived anti-GM1 antibodies and cholera toxin beta subunit impair axon regeneration/repair after PNS injury in mice. Comparative studies indicated that the antibody/ligand-mediated inhibition of axon regeneration is dependent on antibody/ligand characteristics such as affinity-avidity and fine specificity. These data indicate that circulating immune effectors such as human autoantibodies, which are exogenous to the nervous system, can modulate axon regeneration/nerve repair in autoimmune neurological disorders such as GBS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium levels in spines play a significant role in determining the sign and magnitude of synaptic plasticity. The magnitude of calcium influx into spines is highly dependent on influx through N-methyl D-aspartate (NMDA) receptors, and therefore depends on the number of postsynaptic NMDA receptors in each spine. We have calculated previously how the number of postsynaptic NMDA receptors determines the mean and variance of calcium transients in the postsynaptic density, and how this alters the shape of plasticity curves. However, the number of postsynaptic NMDA receptors in the postsynaptic density is not well known. Anatomical methods for estimating the number of NMDA receptors produce estimates that are very different than those produced by physiological techniques. The physiological techniques are based on the statistics of synaptic transmission and it is difficult to experimentally estimate their precision. In this paper we use stochastic simulations in order to test the validity of a physiological estimation technique based on failure analysis. We find that the method is likely to underestimate the number of postsynaptic NMDA receptors, explain the source of the error, and re-derive a more precise estimation technique. We also show that the original failure analysis as well as our improved formulas are not robust to small estimation errors in key parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In several species, a family of nuclear receptors, the peroxisome proliferator-activated receptors (PPARs) composed of three isotypes, is expressed in somatic cells and germ cells of the ovary as well as the testis. Invalidation of these receptors in mice or stimulation of these receptors in vivo or in vitro showed that each receptor has physiological roles in the gamete maturation or the embryo development. In addition, synthetic PPAR gamma ligands are recently used to induce ovulation in women with polycystic ovary disease. These results reveal the positive actions of PPAR in reproduction. On the other hand, xenobiotics molecules (in herbicides, plasticizers, or components of personal care products), capable of activating PPAR, may disrupt normal PPAR functions in the ovary or the testis and have consequences on the quality of the gametes and the embryos. Despite the recent data obtained on the biological actions of PPARs in reproduction, relatively little is known about PPARs in gametes and embryos. This review summarizes the current knowledge on the expression and the function of PPARs as well as their partners, retinoid X receptors (RXRs), in germ cells and preimplantation embryos. The effects of natural and synthetic PPAR ligands will also be discussed from the perspectives of reproductive toxicology and assisted reproductive technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Inflammation is implicated in the development of cancer related fatigue (CRF). However there is limited literature on the mediators of inflammation (namely), cytokines and their receptors, associated with clinically significant fatigue and response to treatment. Methods: We reviewed 37 advanced cancer patients with fatigue (≥4/10), who participated in two Randomized Controlled Trials, of anti-inflammatory agents (Thalidomide and Dexamethasone) for CRF. Responders showed improvement in FACIT-F subscale at the end of study (Day 15). Baseline patient characteristics and symptoms were assessed by FACIT-F, ESAS; serum cytokines [IL-1β and receptor antagonist (IL-1RA), IL-6, IL-6R, TNF-α and sTNF-R1 and R2, IL-8, IL-10, IL-17] levels measured by Luminex. Data were analyzed using principal component analysis (PCA) [reporting cumulative variance (variance) for the first four components] to determine their association with fatigue and response to treatment. Results: Females were 54%. Mean (SD) was as follows for age, 61(14); baseline FACIT (F) scores, 21.4(8.6); ESAS Fatigue item, 6.5(1.9); and FACIT-F change, 6.4(9.7); ESAS (fatigue) change, -2 (2.41). Baseline median in pg/mL for IL-6, TNF-α, IL-1β were 31.9; 18.9; 0.55, respectively. Change in IL-6 negatively correlated with change in FACIT-F scores (p=0.02). Baseline CRF (FACIT-F score) was associated with IL-6, IL-6R and IL-17, Variance = 78% whereas IL-10, IL-1RA, TNF-α and IL-1β were associated with improvement of CRF, Variance=74%. Conversely, IL-6 and IL-8 were associated with no improvement or worsening of CRF, Variance= 93%. Conclusions: Change in IL-6 negatively correlated with change in FACIT-F scores. IL-6, IL-6R and IL-17 are associated with CRF while IL-6 and IL-8 were associated with no improvement of CRF. Further studies are warranted confirm our findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The family of membrane protein called glutamate receptors play an important role in the central nervous system in mediating signaling between neurons. Glutamate receptors are involved in the elaborate game that nerve cells play with each other in order to control movement, memory, and learning. Neurons achieve this communication by rapidly converting electrical signals into chemical signals and then converting them back into electrical signals. To propagate an electrical impulse, neurons in the brain launch bursts of neurotransmitter molecules like glutamate at the junction between neurons, called the synapse. Glutamate receptors are found lodged in the membranes of the post-synaptic neuron. They receive the burst of neurotransmitters and respond by fielding the neurotransmitters and opening ion channels. Glutamate receptors have been implicated in a number of neuropathologies like ischemia, stroke and amyotrophic lateral sclerosis. Specifically, the NMDA subtype of glutamate receptors has been linked to the onset of Alzheimer’s disease and the subsequent degeneration of neuronal cells. While crystal structures of AMPA and kainate subtypes of glutamate receptors have provided valuable information regarding the assembly and mechanism of activation; little is known about the NMDA receptors. Even the basic question of receptor assembly still remains unanswered. Therefore, to gain a clear understanding of how the receptors are assembled and how agonist binding gets translated to channel opening, I have used a technique called Luminescence Resonance Energy Transfer (LRET). LRET offers the unique advantage of tracking large scale conformational changes associated with receptor activation and desensitization. In this dissertation, LRET, in combination with biochemical and electrophysiological studies, were performed on the NMDA receptors to draw a correlation between structure and function. NMDA receptor subtypes GluN1 and GluN2A were modified such that fluorophores could be introduced at specific sites to determine their pattern of assembly. The results indicated that the GluN1 subunits assembled across each other in a diagonal manner to form a functional receptor. Once the subunit arrangement was established, this was used as a model to further examine the mechanism of activation in this subtype of glutamate receptor. Using LRET, the correlation between cleft closure and activation was tested for both the GluN1 and GluN2A subunit of the NMDA receptor in response to agonists of varying efficacies. These investigations revealed that cleft closure plays a major role in the mechanism of activation in the NMDA receptor, similar to the AMPA and kainate subtypes. Therefore, suggesting that the mechanism of activation is conserved across the different subtypes of glutamate receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method employing isotopically- and photoaffinity-labeled probes and polyclonal and monoclonal antibody to the probes for the identification, isolation and recovery of protein receptors is described. Antibody was raised against N-(3-(p-azido-m-($\sp{125}$I) -iodophenyl)) propionate (AIPP) coupled to and photolyzed to BSA. The antibodies specifically bound AIPP-derivatized proteins. An isolation system was developed utilizing this probe and two antigenically identical reversible analogues. N-(3-((p-azido-m-($\sp{125}$I) -iodo-phenyl)propionyl)amidoethyl-1,3-dithiopropionyl) succinimide (Reversible $\sp{125}$I-AIPPS) reacts with primary amines and N-(((3-p-azido-m-($\sp{125}$I) -iodophenyl)propionyl)amidoethyl)dithiopyridine ($\sp{125}$I-AIPP-PDA) reacts with reduced thiols. The applicability of the system was established by derivatizing known ligands (Transferrin and Interferon-alpha) with one of the probes. The ligand-probe was then allowed to interact with its receptor by incubation with SS5 lymphoma cells and cross-linked by photolysis at 300 nm. The photolyzed ligand/probe/receptor preparation was then recovered with AIPP antibody. Utilization of N-(3-((p-azido-m-($\sp{125}$I) -iodo-phenyl-propionyl)-amidoethyl-1,3-dithiopropionyl) succinimide (Reversible $\sp{125}$I-AIPPS) allowed the components of the photolyzed complex to be separated by treatment with 2-mercaptoethanol in the SDS-PAGE solubilization buffer. Ligand and receptor labeling were then assessed by Coomassie staining and autoradiography. Results of receptor assays suggest that $\sp{125}$I-AIPP was, indeed, transferred to moieties that represent the receptors for both Transferrin and Interferon-alpha. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinoic acid has profound effects on the cellular growth and differentiation of a variety of cells. However, the molecular basis of retinoic acid action has, until recently, not been well understood. The identification of retinoic acid receptors which bear a high degree of homology to members of the steroid receptor super-family has dramatically altered our understanding of the biology of retinoids. The focus of this dissertation has been toward identification of retinoic acid binding proteins responsible for the effects of this molecule on gene expression.^ We have characterized in detail the retinoic acid-dependent induction of tissue transglutaminase gene expression in a myeloid cell line, human promyelocytic leukemia cells (HL-60 cells). Using cDNA probes specific for tissue transglutaminase, we have determined that the retinoic acid induced increase in enzyme level is due to an increase in the level of tissue transglutaminase mRNA. We have used this model as a probe to investigate the molecular basis of retinoid regulated gene expression.^ This thesis demonstrates that retinoic acid receptors are expressed in cells which induce tissue transglutaminase expression in response to retinoic acid. In Hl-60 cells retinoic acid-induced transglutaminase expression is associated with saturable nuclear retonic acid binding. Transcripts for both the alpha and beta forms of the retinoic acid receptors can be detected in these cells. Pretreatment of HL-60 cells with agents that potentiate retinoic acid-induced transglutaminase expression also modestly induced the alpha form of the retinoic acid receptor. Studies in macrophages and umbilical vein endothelial cells have also associated expression of the beta form of the retinoic acid with retinoic acid induced tissue transglutaminase expression.^ To investigate directly if retinoic acid receptors regulate retinoic acid-induced tissue transglutaminase expression we developed a series of stably transfected Balb-c 3T3 cells expressing different levels of the beta or gamma form of the retinoic acid receptor. These studies indicated that either the beta or gamma receptor can stimulate endogenous tissue transglutaminase expression in response to retinoic acid. These are among the first studies in the steroid field to describe regulation of an endogenous gene by a transfected receptor. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The task of encoding and processing complex sensory input requires many types of transsynaptic signals. This requirement is served in part by an extensive group of neurotransmitter substances which may include thirty or more different compounds. At the next level of information processing, the existence of multiple receptors for a given neurotransmitter appears to be a widely used mechanism to generate multiple responses to a given first messenger (Snyder and Goodman, 1980). Despite the wealth of published data on GABA receptors, the existence of more than one GABA receptor was in doubt until the mid 1980's. Presently there is still disagreement on the number of types of GABA receptors, estimates for which range from two to four (DeFeudis, 1983; Johnston, 1985). Part of the problem in evaluating data concerning multiple receptor types is the lack of information on the number of gene products and their subsequent supramolecular organization in different neurons. In order to evaluate the question concerning the diversity of GABA receptors in the nervous system, we must rely on indirect information derived from a wide variety of experimental techniques. These include pharmacological binding studies to membrane fractions, electrophysiological studies, localization studies, purification studies, and functional assays. Almost all parts of the central and peripheral nervous system use GABA as a neurotransmitter, and these experimental techniques have therefore been applied to many different parts of the nervous system for the analysis of GABA receptor characteristics. We are left with a large amount of data from a wide variety of techniques derived from many parts of the nervous system. When this project was initiated in 1983, there were only a handful of pharmacological tools to assess the question of multiple GABA receptors. The approach adopted was to focus on a single model system, using a variety of experimental techniques, in order to evaluate the existence of multiple forms of GABA receptors. Using the in vitro rabbit retina, a combination of pharmacological binding studies, functional release studies and partial purification studies were undertaken to examine the GABA receptor composition of this tissue. Three types of GABA receptors were observed: Al receptors coupled to benzodiazepine and barbiturate modulation, and A2 or uncoupled GABA-A receptors, and GABA-B receptors. These results are evaluated and discussed in light of recent findings by others concerning the number and subtypes of GABA receptors in the nervous system. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amino acid glutamate is the primary excitatory neurotransmitter for the CNS and is responsible for the majority of fast synaptic transmission. Glutamate receptors have been shown to be involved in multiple forms of synaptic plasticity such as LTP, LTD, and the formation of specific synaptic connections during development. In addition to contributing to the plasticity of the CNS, glutamate receptors also are involved in, at least in part, various pathological conditions such as epilepsy, ischemic damage due to stroke, and Huntington's chorea. The regulation of glutamate receptors, particularly the ionotropic NMDA and AMPA/KA receptors is therefore of great interest. In this body of work, glutamate receptor function and regulation by kinase activity was examined using the Xenopus oocyte which is a convenient and faithful expression system for exogenous proteins. Glutamate receptor responses were measured using the two-electrode voltage clamp technique in oocytes injected with rat total forebrain RNA. NMDA elicited currents that were glycine-dependent, subject to block by Mg$\sp{2+}$ in a voltage-dependent manner and sensitive to the specific NMDA antagonist APV in a manner consistent with those types of responses found in neural tissue. Similarly, KA-evoked currents were sensitive to the specific AMPA/KA antagonist CNQX and exhibited current voltage relationships consistent with the calcium permeable type II KA receptors found in the hippocampus. There is evidence to indicate that NMDA and AMPA/KA receptors are regulated by protein kinase A (PKA). We explored this by examining the effects of activators of PKA (forskolin, 1-isobutyl-3-methylxanthine (IBMX) and 8-Br-cAMP) on NMDA and KA currents in the oocyte. In buffer where Ca$\sp{2+}$ was replaced by 2 mM Ba$\sp{2+},$ forskolin plus IBMX and 8-Br-cAMP augmented currents due to NMDA application but not KA. This augmentation was abolished by pretreating the oocytes in the kinase inhibitor K252A. The use of chloride channel blockers resulted in attenuation of this effect indicating that Ba$\sp{2+}$ influx through the NMDA channel was activating the endogenous calcium-activated chloride current and that the cAMP mediated augmentation was at the level of the chloride channel and not the NMDA channel. This was confirmed by (1) the finding that 8-Br-cAMP increased chloride currents elicited via calcium channel activation while having no effect on the calcium channels themselves and (2) the fact that lowering the Ba$\sp{2+}$ concentration to 200 $\mu$M abolished the augmentation NMDA currents by 8-Br-cAMP. Thus PKA does not appear to modulate ionotropic glutamate receptors in our preparation. Another kinase also implicated in the regulation of NMDA receptors, calcium/phospholipid-dependent protein kinase (PKC), was examined for its effects on the NMDA receptor under low Ba$\sp{2+}$ (200 $\mu$M) conditions. Phorbol esters, activators of PKC, induced a robust potentiation of NMDA currents that was blockable by the kinase inhibitor K252A. Furthermore activation of metabotropic receptors by the selective agonist trans-ACPD, also potentiated NMDA albeit more modestly. These results indicate that neither NMDA nor KA-activated glutamate receptors are modulated by PKA in Xenopus oocytes whereas NMDA receptors appear to be augmented by PKC. Furthermore, the endogenous chloride current of the oocyte was found to be responsive to Ba$\sp{2+}$ and in addition is enhanced by PKA. Both of these latter findings are novel. In conclusion, the Xenopus oocyte is a useful expression system for the analysis of ligand-gated channel activity and the regulation of those channels by phosphorylation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(gamma)-Aminobutyric acid (GABA), a neurotransmitter in the mammalian central nervous system, influences neuronal activity by interacting with at least two pharmacologically and functionally distinct receptors. GABA(,A) receptors are sensitive to blockade by bicuculline, are associated with benzodiazepine and barbiturate binding sites, and mediate chloride flux. The biochemical and pharmacolocal properties of GABA(,B) receptors, which are stereoselectively activated by (beta)-p-chlorophenyl GABA (baclofen), are less well understood. The aim of this study was to define these features of GABA(,B) receptors, with particular emphasis on their possible relationship to the adenylate cyclase system in brain.^ By themselves, GABA agonists have no effect on cAMP accumulation in rat brain slices. However, some GABA agonists markedly enhance the cAMP accumulation that results from exposure to norepinephrine, adenosine, VIP, and cholera toxin. Evidence that this response is mediated by the GABA(,B) system is provided by the finding that it is bicuculline-insensitive, and by the fact that only those agents that interact with GABA(,B) binding sites are active in this regard. GABA(,B) agonists are able to enhance neurotransmitter-stimulated cAMP accumulation in only certain brain regions, and the response is not influenced by phosphodiesterase inhibitors, although is totally dependent on the availability of extracellular calcium. Furthermore, data suggest that inhibition of phospholipase A(,2), a calcium-dependent enzyme, decreases the augmenting response to baclofen, although inhibitors of arachidonic acid metabolism are without effect. These findings indicate that either arachidonic acid or lysophospholipid, products of PLA(,2)-mediated degradation of phospholipids, mediates the augmentation. Moreover, phorbol esters, compounds which directly activate protein kinase C, were also found to enhance neurotransmitter-stimulated cAMP accumulation in rat brain slices. Since this enzyme is known to be stimulated by unsaturated fatty acids such as arachidonate, it is proposed that GABA(,B) agonists enhance cAMP accumulation by fostering the production of arachidonic acid which stimulates protein kinase C, leading to the phosphorylation of some component of the adenylate cyclase system. Thus, GABA, through an interaction with GABA(,B) receptors, modulates neurotransmitter receptor responsiveness in brain. The pharmocological manipulation of this response could lead to the development of therapeutic agents having a more subtle influence than current drugs on central nervous system function. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Levodopa, the precursor of dopamine, is currently the drug of choice in the treatment of Parkinson's disease. Recently, two direct dopamine agonists, bromocriptine and pergolide, have been tested for the treatment of Parkinson's disease because of reduced side effects compared to levodopa. Few studies have evaluated the effects of long-term treatment of dopamine agonists on dopamine receptor regulation in the central nervous system. Thus, the purpose of this study was to determine whether chronic dopamine agonist treatment produces a down-regulation of striatal dopamine receptor function and to compare the results of the two classes of dopaminergic drugs.^ Levodopa with carbidopa, a peripheral decarboxylase inhibitor, was administered orally to rats whereas bromocriptine and pergolide were injected intraperitoneally once daily. Several neurochemical parameters were examined from 1 to 28 days.^ Levodopa minimally decreased striatal D-1 receptor activity but increased the number of striatal D-2 binding sites. Levodopa increased the V(,max) of tyrosine hydroxylase (TH) in all brain regions tested. Protein blot analysis of striatal TH indicated a significant increase in the amount of TH present. Dopamine-beta-hydroxylase (DBH) activity was markedly decreased in all brain regions studied and mixing experiments of control and drug-treated cortices did not show the presence of an increased level of endogenous inhibitors.^ Bromocriptine treatment decreased the number of D-2 binding sites. Striatal TH activity was decreased and protein blot analysis indicated no change in TH quantity. The specificity of bromocriptine for striatal TH suggested that bromocriptine preferentially interacts with dopamine autoreceptors.^ Combination levodopa-bromocriptine was administered for 12 days. There was a decrease in both D-1 receptor activity and D-2 binding sites, and a decrease in brain HVA levels suggesting a postsynaptic receptor action. Pergolide produced identical results to the combination levodopa-bromocriptine studies.^ In conclusion, combination levodopa-bromocriptine and pergolide treatments exhibited the expected down-regulation of dopamine receptor activity. In contrast, levodopa appeared to up-regulate dopamine receptor activity. Thus, these data may help to explain, on a biochemical basis, the decrease in the levodopa-induced side effects noted with combination levodopa-bromocriptine or pergolide therapies in the treatment of Parkinson's disease. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic administration of psychomotor stimulants has been reported to produce behavioral sensitization to its effects on motor activity. This adaptation may be related to the pathophysiology of recurrent psychiatric disorders. Since disturbances in circadian rhythms are also found in many of these disorders, the relationship between sensitization and chronobiological factors became of interest. Therefore, a computerized monitoring system investigated the following: whether repeated exposure to methylphenidate (MPD) and amphetamine (AMP) could produce sensitization to its locomotor effects in the rat; whether sensitization to MPD and AMP was dependent on the circadian time of drug administration; whether the baseline levels of locomotor activity would be effected by repeated exposure to MPD and AMP; whether the expression of a sensitized response could be affected by the photoperiod; and whether MK-801, a non-competitive NMDA antagonist, could disrupt the development of sensitization to MPD. Dawley rats were housed in test cages and motor activity was recorded continuously for 16 days. The first 2 days served as baseline for each rat, and on day 3 each rat received a saline injection. The locomotor response to 0.6, 2.5, or 10 mg/kg of MPD was tested on day 4, followed by five days of single injections of 2.5 mg/kg MPD (days 5–9). After five days without injection (days 10–14) rats were re-challenged (day 15) with the same doses they received on day 4. There were three separate dose groups ran at four different times of administration, 08:00, 14:00, 20:00, or 02:00 (i.e. 12 groups). The same protocol was conducted with AMP with the doses of 0.3, 0.6, and 1.2 mg/kg given on day 4 and 15, and 0.6 mg/kg AMP as the repeated dose on days 5 to 9. In the second set of experiments only sensitization to MPD was investigated. The expression of the sensitized response was dose-dependent and mainly observed with challenge of the lower dose groups. The development of sensitization to MPD and ANT was differentially time-dependent. For MPD, the most robust sensitization occurred during the light phase, with no sensitization during the middle of the dark phase. (Abstract shortened by UMI.) ^