115 resultados para Human Tumor-antigens
Resumo:
Liposomes prepared with human LS174T colon tumor cell membranes induce specific primary and secondary xenogeneic immune responses in BALB/c splenocytes in vitro. The multilamellar vesicular liposomes were prepared by adding sonicated membrane fragments in 8 mM CaCl(,2) to a dried lipid film. Cytoxic splenocytes generated in vivo exhibited specificity for the LS174T cell; liposomes elicited higher levels of cytotoxicity than did membranes (P < 0.01). Secondary blastogenic responses elicited in in vivo-primed spleen cells by liposomes also produced a significantly greater (P < 0.005) response than membranes. Subsequently, in vitro induction of primary blastogenic and cytotoxic responses by liposomes were accomplished and revealed similar kinetics to that of whole LS174T cell immunogens. Specificity of the in vitro-primed spleen cells was clearly demonstrated (P < 0.01) on a variety of human tumor cells using both the primed lymphocyte and cell-mediated cytotoxicity assays. The results of competitive inhibition tests with autologous lymphoblasts demonstrated that 30% of the cytotoxic activity was directed against lymphocyte antigens.^ The adjuvant effect of liposomes was shown to be mediated primarily by tumor antigens exposed on the outer surface of liposomes. Trypsinization of the liposomes which eliminated 96% of the surface protein reduced the ability of liposomes to induce cytotoxic splenocytes. The generation of cytolytic activity with liposomes of increasing protein concentration showed that while 10 (mu)g protein was threshold, 100 (mu)g protein induced maximal responses. In addition, membrane fluidity studies revealed that rigid liposomes were significantly (P < 0.05) more efficacious than fluid liposomes in inducing cytotoxicity.^ The induction of the primary response required the presence of nonadherent splenocytes bearing the Thy-1, Lyt-1, and Lyt-2 surface markers. The role of a Lyt-123 subpopulation was suggested by the inability of both the Lyt-1 and Lyt-2 depleted populations to completely restore the cytolytic levels to normal. In addition, the interaction of I-A('+) spleen adherent cells with liposomes for at least 8 hours was required to generate maximal cytotoxic activity. The phenotype of the cytotoxic effector was Thy-1('+), Lyt-2('+), and I-A('d-).^ Incorporation of tumor antigens into liposomes has thus enabled primary immunization in vitro to human colon cancer antigens and may afford an adaptable means to evaluate and to select specific immune responses, as well as to identify colon tumor-specific determinants.^
Resumo:
DNA mediated gene transfection is an important tool for moving and isolating genes from one cell type and putting them into a foreign genetic background. DNA transfection studies have been done routinely in many laboratories to identify and isolate transforming sequences in human tumors and tumor cell lines. A second technique, microcell-mediated chromosome transfer, allows the transfer of small numbers of intact human chromosome from one cell to another. This work was done to compare the efficiency of these two techniques in the transformation of NIH 3T3 mouse fibroblast cells.^ My intent in comparing these two techniques was to see if there was a difference in the transforming capability of DNA which has been purified of all associated protein and RNAs, and that of DNA which is introduced into a cell in its native form, the chromosome. If chromosomal sequences were capable of transforming the 3T3 cells in culture, the method could then be used as a way to isolate the relevant tumorigenic chromosomes from human tumors.^ The study shows, however, that even for those cell lines that contain transforming sequences identified by DNA-mediated gene transfer, those same sequences were unable to transform 3T3 cells when introduced to the cells by somatic fusion of human tumor microcells. I believe that the human transforming sequences in their original genetic conformation are not recognized by the mouse cell as genes which should be expressed; therefore, no noticeable transformation event was selected by this technique. ^
Resumo:
Ras proteins (H-, N-, K4A-, and K4B) are associated with cellular resistance to ionizing radiation (IR) and, consequently, may provide a potential target for radiosensitization strategies in cancer treatment. Several approaches have been used to compromise Ras activity and enhance IR-induced cell killing; however, these techniques either target proteins in addition to Ras or only target one member of the Ras family. In this study, I have used an adenovirus (AV1Y28) that expresses a single-chain antibody fragment directed against Ras proteins to investigate the mechanism(s) responsible for Ras-mediated radiation resistance. AV1Y28 enhanced the radiosensitivity of a number of human tumor cell lines without affecting the radiosensitivity of normal human fibroblasts. Whereas AV1Y28-mediated sensitization was independent of ras gene mutational status, it was dependent on active Ras proteins suggesting that AV1Y28 may be useful against a broad range of tumors. AV1Y28-mediated cell killing was not the result of redistributing cells into a more radiosensitive phase of the cell cycle and did not enhance IR-induced apoptosis. Given that Ras proteins transduce environmental signals to the nucleus, the effect of AV1Y28 on the IR-inducible transcription factor NF-κB were determined. Although AV1Y28 inhibited IR-induced NF-κB through the suppression of IKK, additional work established that NF-κB did not play a role in AV1Y28-mediated radiosensitization. However, a novel component of the signaling pathway responsible for IR-induced NF-κB was identified. Previous studies had suggested a relationship between mutant ras genes and IR-induced G2 delay; therefore the effects of AV1Y28 on the progression of cells from G2 to M after IR were determined. Pretreatment of cells with AV1Y28 prevented the IR-induced G2 arrest. AV1Y28-mediated abrogation of IR-induced G2 arrest correlated with those cell line lines that were sensitized by AV1Y28. Moreover, a significant increase in cells undergoing mitotic catastrophe was found after IR in AV1Y28 treated cells. The abrogation of G2 arrest by AV1Y28 was the result of maintaining the active form of cdc2, an inducer of mitosis, after exposure to IR. This study identified the mechanism of AV1Y28-mediated radiosensitization and has provided insight into the signal transduction pathways responsible for Ras-mediated radiation resistance. ^
Resumo:
The involvement of tubulin mutations as a cause of clinical drug resistance has been intensely debated in recent years. In the studies described here, we used transfection to test whether beta1-tubulin mutations and polymorphisms found in cancer patients are able to confer resistance to drugs that target microtubules. Three of four mutations (A185T, A248V, R306C, but not G437S) that we tested caused paclitaxel resistance, as indicated by the following observations: (a) essentially 100% of cells selected in paclitaxel contained transfected mutant tubulin; (b) paclitaxel resistance could be turned off using tetracycline to turn off transgene expression; (c) paclitaxel resistance increased as mutant tubulin production increased. All the paclitaxel resistance mutations disrupted microtubule assembly, conferred increased sensitivity to microtubule-disruptive drugs, and produced defects in mitosis. The results are consistent with a mechanism in which tubulin mutations alter microtubule stability in a way that counteracts drug action. These studies show that human tumor cells can acquire spontaneous mutations in beta1-tubulin that cause resistance to paclitaxel, and suggest that patients with some polymorphisms in beta1-tubulin may require higher drug concentrations for effective therapy.
Resumo:
Antigenic changes present in nonantigenic tumor cells exposed to UV radiation (UV) in vitro were investigated by addressing the following questions: (1) Are antigenic variants (AV) produced that are rejected in normal but not immunosuppressed mice? (2) Does generation of AV depend upon intrinsic properties of the cells exposed or result from the action of UV? (3) Is antigenic modification induced by UV due to increased histocompatibility antigen expression? (4) Do AV crossreact immunologically with parental tumor or with other AV? and (5) Is the UV-associated common antigen expressed on UV-induced tumors present on UV-irradiated tumor cells? AV were generated at different frequencies following in vitro UV irradiation of a spontaneous murine fibrosarcoma (51% of cell lines tested), a murine melanoma (56%), and two melanoma clones (100% and 11%). This indicated that the percentage of AV produced is an intrinsic property of the cell line exposed. The increased antigenicity did not correlate with an increased expression of class I histocompatibility antigens. Immunological experiments demonstrated that the AV and parental cells shared a determinant that was susceptible to immune recognition, but incapable of inducing immunity. In contrast, the AV were noncrossreactive, suggesting that variant-specific antigens were also expressed. Finally, the AV were recognized by UV-induced suppressor cells, indicating that the UV-associated common antigen expressed by UV-induced tumors was also present. This investigation provides new information on the susceptibility of tumors to antigenic modification by UV and on the relationship between tumor antigens and neoplastic transformation. Furthermore, it suggests an immunological approach for cancer therapy. ^
Resumo:
Most skin cancers induced in mice by Ultraviolet (UV) radiation express highly immunogenic Tumor specific transplantation antigens (TSTAs) and thus exhibit a regressor phenotype. In this study, I have used cloned genes encoding tumor antigens and oncogenes in conjunction with DNA transfection technique to isolate and characterize regressor variants from progressor tumors and vice versa. The purpose of this study was (1) to determine whether the product of a cloned gene (216) from UV-1591 tumor, which encodes a novel MHC class I antigen can function as a tumor rejection antigen when expressed on unrelated, nonantigenic, murine tumor cells or whether its function is restricted to UV-induced tumors, and (2) to determine the processes by which progressor variants derived from a regressor UV-2240 cell line by transfection with an activated Ha-ras oncogene escape the immune defenses of the normal immunocompetent host.^ To answer the first question, a spontaneously transformed, nonimmunogenic cell line (10T-1) was cotransfected with DNA from p216 and pSV2-neo plasmids. Results demonstrate that the product of a cloned TSTA gene from a UV-induced murine tumor is capable of functioning as a tumor rejection antigen when expressed on unrelated, nonantigenic tumor cells. In addition, these results indicate that this approach could be used to augment the immune response against poorly antigenic tumors.^ To answer the second question, progressor variants were isolated from a highly antigenic UV radiation-induced C3H mouse regressor fibrosarcoma cell line, UV-2240, by transfection with an activated Ha-ras oncogene. Subcutaneous injection of Ha-ras-transfected UV-2240 cells into immunocompetent C3H mice produced tumors in 4 of 36 animals. In addition, the Ha-ras-induced progressor variants produced experimental lung metastasis in both normal C3H and nude mice, although they induced more lung nodules in nude mice than in normal C3H mice. Results indicate that the progressor phenotype of the Ha-ras-induced tumor variants is not due to loss of TSTAs or MHC class I antigens. This implies that some tumors can escape the immune defenses of the normal immunocompetent host by mechanisms other than the loss of TSTAs and MHC class I antigens. (Abstract shortened with permission of author.) ^
Resumo:
Natural killer cells may provide an important first line of defense against metastatic implantation of solid tumors. This antitumor function occurs during the intravascular and visceral lodgment phase of cancer dissemination, as demonstrated in small animal metastasis models. The role of the NK cell in controlling human tumor dissemination is more difficult to confirm, at least partially because of ethical restraints on experimental design. Nonetheless, a large number of solid tumor patient studies have demonstrated NK cell cytolysis of both autologous and allogeneic tumors.^ Of the major cancer therapeutic modalities, successful surgery in conjunction with other treatments offers the best possibility of cure. However, small animal experiments have demonstrated that surgical stress can lead to increased rates of primary tumor take, and increased incidence, size, and rapidity of metastasis development. Because the physiologic impact of surgical stress can also markedly impair perioperative antitumor immune function in humans, we examined the effect of surgical stress on perioperative NK cell cytolytic function in a murine preclinical model. Our studies demonstrated that hindlimb amputation led to a marked impairment of postoperative NK cell cytotoxicity. The mechanism underlying this process is complex and involves the postsurgical generation of splenic erythroblasts that successfully compete with NK cells for tumor target binding sites; NK cell-directed suppressor cell populations; and a direct impairment of NK cell recycling capacity. The observed postoperative NK cell suppression could be prevented by in vivo administration of pyrimidinone biologic response modifiers or by short term in vitro exposure of effector cells to recombinant Interleukin-2. It is hoped that insights gained from this research may help in the future development of NK cell specific perioperative immunotherapy relevant to the solid tumor patients undergoing cancer resection. ^
Resumo:
Cardiac glycoside compounds have traditionally been used to treat congestive heart failure. Recently, reports have suggested that cardiac glycosides may also be useful for treatment of malignant disease. Our research with oleandrin, a cardiac glycoside component of Nerium oleander, has shown it to be a potent inducer of human but not murine tumor cell apoptosis. Determinants of tumor sensitivity to cardiac glycosides were therefore studied in order to understand the species selective cytotoxic effects as well as explore differential sensitivity amongst a variety of human tumor cell lines. ^ An initial model system involved a comparison of human (BRO) to murine (B16) melanoma cells. Human BRO cells were found to express both the sensitive α3 as well as the less sensitive α1 isoform subunits of Na+,K +-ATPase while mouse B16 cells expressed only the α1 isoform. Drug uptake and inhibition of Na+,K+-ATPase activity were also different between BRO and B16 cells. Partially purified human Na+,K+-ATPase enzyme was inhibited by cardiac glycosides at a concentration that was 1000-fold less than that required to inhibit mouse B16 enzyme to the same extent. In addition, uptake of oleandrin and ouabain was 3–4 fold greater in human than murine cells. These data indicate that differential expression of Na+,K+-ATPase isoform composition in BRO and B16 cells as well as drug uptake and total enzyme activity may all be important determinants of tumor cell sensitivity to cardiac glycosides. ^ In a second model system, two in vitro cell culture model systems were investigated. The first consisted of HFU251 (low expression of Na+,K+-ATPase) and U251 (high Na+ ,K+-ATPase expression) cell lines. Also investigated were human BRO cells that had undergone stable transfection with the α1 subunit resulting in an increase in total Na+,K+-ATPase expression. Data derived from these model systems have indicated that increased expression of Na+,K+-ATPase is associated with an increased resistance to cardiac glycosides. Over-expression of Na +,K+-ATPase in tumor cells resulted in an increase of total Na+,K+-ATPase activity and, in turn, a decreased inhibition of Na+,K+-ATPase activity by cardiac glycosides. However, of interest was the observation that increased enzyme expression was also associated with an elevated basal level of glutathione (GSH) within cells. Both increased Na+,K+-ATPase activity and elevated GSH content appear to contribute to a delayed as well as diminished release of cytochrome c and caspase activation. In addition, we have noted an increased colony forming ability in cells with a high level of Na+,K+-ATPase expression. This suggests that Na+,K+-ATPase is actively involved in tumor cell growth and survival. ^
Resumo:
Several immune pathologies are the result of aberrant regulation of T lymphocytes. Pronounced T cell proliferation can result in autoimmunity or hematologic malignancy, whereas loss of T cell activity can manifest as immunodeficiency. Thus, there is a critical need to characterize the signal transduction pathways that mediate T cell activation so that novel and rational strategies to detect and effectively control T cell mediated disease can be achieved. ^ The first objective of this dissertation was to identify and characterize novel T cell regulatory proteins that are differentially expressed upon antigen induced activation. Using a functional proteomics approach, two members of the prohibitin (Phb) family of proteins, Phb1 and Phb2, were determined to be upregulated upon activation of primary human T cells. Furthermore, their regulated expression was dependent upon CD3 and CD28 signaling pathways which synergistically increased their expression. In contrast to previous reports of Phb nuclear localization, both proteins were determined to localize to the mitochondrial inner membrane of human T cells. Additionally, novel Phb phosphorylation sites were identified and characterized using mass spectrometry, phosphospecific antibodies and site directed mutagenesis. ^ Prohibitins have been proposed to play important roles in cancer development however the mechanism of action has not been elucidated. The second objective of this dissertation was to define the functional role of Phbs in T cell activity, survival and disease. Compared to levels in normal human T cells, Phb expression was higher in the human tumor T cell line Kit225 and subcellularly localized to the mitochondrion. Ablation of Phb expression by siRNA treatment of Kit225 cells resulted in disruption of mitochondrial membrane potential and significantly enhanced their sensitivity to cell death, suggesting they serve a protective function in T cells. Furthermore, Q-RT-PCR analysis of human oncology cDNA expression libraries indicated the Phbs may represent hematological cancer biomarkers. Indeed, Phb1 and Phb2 protein levels were 6-10 fold higher in peripheral blood mononuclear cells isolated from malignant lymphoma and multiple myeloma patients compared to healthy individuals. ^ Taken together, Phb1 and Phb2 are novel phosphoproteins upregulated during T cell activation and transformation to function in the maintenance of mitochondrial integrity and perhaps energy metabolism, thus representing previously unrecognized intracellular biomarkers and therapeutic targets for regulating T cell activation and hematologic malignancies. ^
Resumo:
Human colon cancer cells, LS180 and 174T, exhibit monoclonal antibody (mAb) 1083-17-1A and 5E113 defined tumor associated antigens. By radioimmunoassay, LS180 cells expressed the highest amount of mAb1083 defined antigens among the cell lines tested. Another mAb, 5E113, competed with mAb1083 for binding to LS180 cells, suggesting that both mAbs might bind onto identical (or adjacent) epitopes. By Scatchard analysis, about one million copies of the epitopes were present on LS180 colon cancer cells. The affinity of mAb1083 binding to the cells was 2.97 x 10('10) M('-1); the Sipsian heteroclonality value of mAb1083 was 0.9, thus approximating a single clone of reactive antibody. The qualitative studies showed that the epitopes were probably not carbohydrate because of their sensitivity to proteinases and not to mixed glucosidases and neuraminidase. The tunicamycin homologue B(,2) inhibited the incoporation of ('3)H-labeled galactose but not uptake of ('35)S-labeled methionine, nor expression of monoclonal antibody defined antigens providing further evidence to exclude the possibility of carbohydrate epitopes. There was evidence that the epitope might be partially masked in its "native" conformation, since short exposure or low dose treatment with proteases increased mAbs binding. The best detergent for antigen extraction, as detected by dot blotting and competitive inhibition assays, was octylglucoside at 30 mM concentration. Three methods, immunoprecipitation, Western blotting and photoaffinity labeling, were used to determine the molecular nature of the antigens. These results demonstrated that the antibody bound both 43 K daltons (KD) and 22 KD proteins.^ An in vitro cell-mediated immune approach was also used to attempt identifying function for the antigens. The strategy was to use mAbs to block cytotoxic effector cell killing. However, instead of blocking, the mAb1083 and 5E113 showed strong antibody-dependent cell-mediated cytotoxicities (ADCCs) in the in vitro xenoimmune assay system. In addition, cytotoxic T lymphocytes (CTLs), natural killer cells, and K cell activity were found. Since even the F(ab')2 fragment of mAbs did not inhibit the cytolytic effect, the mAbs defined antigens may not be major target molecules for CTLs. In summary, two molecular species of tumor antigen(s) were identified by mAbs to be present on colon tumor cell lines, LS180 and LS174T. (Abstract shortened with permission of author.) ^
Resumo:
Prostate cancer is the second leading cause of cancer-related death and the most common non-skin cancer in men in the USA. Considerable advancements in the practice of medicine have allowed a significant improvement in the diagnosis and treatment of this disease and, in recent years, both incidence and mortality rates have been slightly declining. However, it is still estimated that 1 man in 6 will be diagnosed with prostate cancer during his lifetime, and 1 man in 35 will die of the disease. In order to identify novel strategies and effective therapeutic approaches in the fight against prostate cancer, it is imperative to improve our understanding of its complex biology since many aspects of prostate cancer initiation and progression still remain elusive. The study of tumor biomarkers, due to their specific altered expression in tumor versus normal tissue, is a valid tool for elucidating key aspects of cancer biology, and may provide important insights into the molecular mechanisms underlining the tumorigenesis process of prostate cancer. PCA3, is considered the most specific prostate cancer biomarker, however its biological role, until now, remained unknown. PCA3 is a long non-coding RNA (ncRNA) expressed from chromosome 9q21 and its study led us to the discovery of a novel human gene, PC-TSGC, transcribed from the opposite strand and in an antisense orientation to PCA3. With the work presented in this thesis, we demonstrate that PCA3 exerts a negative regulatory role over PC-TSGC, and we propose PC-TSGC to be a new tumor suppressor gene that contrasts the transformation of prostate cells by inhibiting Rho-GTPases signaling pathways. Our findings provide a biological role for PCA3 in prostate cancer and suggest a new mechanism of tumor suppressor gene inactivation mediated by non-coding RNA. Also, the characterization of PCA3 and PC-TSGC led us to propose a new molecular pathway involving both genes in the transformation process of the prostate, thus providing a new piece of the jigsaw puzzle representing the complex biology of prostate cancer.
Resumo:
Expression of the K1 gene of human herpesvirus 8 activates nuclear factor-kappaB and induces lymph node hyperplasia and lymphomas in transgenic mice. To further delineate its role in cell survival, we determined whether K1 altered apoptosis of lymphoma cells. K1 protein is expressed in Kaposi sarcoma and primary effusion lymphoma. We retrovirally transfected BJAB lymphoma, THP-1, U937, and Kaposi sarcoma SLK cells to express K1 and a K1 mutant with the deleted immunoreceptor tyrosine-based activation motif (K1m). We challenged cells with an agonistic anti-Fas antibody, Fas ligand, irradiation, and tumor necrosis factor-related apoptosis-inducing ligand. K1 transfectants but not K1m transfectants exhibited reduced levels of apoptosis induced by the anti-Fas antibody but not apoptosis induced by the tumor necrosis factor-related apoptosis-inducing ligand or irradiation. K1 expression resulted in reduced apoptosis rates as shown in several assays. K1 induced a modest reduction in levels of Fas-associated death domain protein, and procaspase 8 recruited to the death-inducing signaling complex. Finally, K1 transfectants cleaved procaspase 8 at significantly lower rates than did K1m transfectants. K1-transfected mice, compared with vector-transfected mice, showed lower death rates after challenge with anti-Fas antibody. K1 may contribute to lymphoma development by stimulating cell survival by selectively blocking Fas-mediated apoptosis.
Resumo:
Carcinoma of the cervix is causally related to infection with the human papillomavirus (HPV), and T cells play a pivotal role in the immune response of the host to rid itself of HPV infection. Therefore, we assessed the T-cell function of women with HPV-related cervical neoplasia against a superantigen, Staphylococcus enterotoxin B (SEB). Each woman provided a cervical brush specimen for HPV DNA testing and Papanicolaou (Pap) smears for the staging of cervical lesions. They also provided a blood specimen for determination of the ability of CD4(+) T and CD8(+) T cells to synthesize Th1 (interleukin-2 [IL-2], gamma interferon [IFN-gamma], and tumor necrosis factor alpha [TNF-alpha]) and Th2 (IL-10) cytokines in response to activation with SEB. Compared with control subjects with self-attested negative Pap smears, women with high-grade squamous intraepithelial lesions (HSIL) had significantly lower percentages of activated CD4(+) T cells that produced IL-2 (P = 0.045), IFN-gamma (P = 0.040), and TNF-alpha (P = 0.015) and a significantly lower percentage of activated CD8(+) T cells that produced IL-2 (P < 0.01). These data indicate that women with HPV-related cervical HSIL show a decrease in Th1 cytokine production by activated CD4(+) T cells and suggested that compromised T-helper functions may negatively impact the function of cytotoxic CD8(+) T cells.
Resumo:
Angiomyolipomas are benign tumors of the kidney which express phenotypes of smooth muscle, fat, and melanocytes. These tumors appear with increased frequency in the autosomal dominant disorder tuberous sclerosis and are the leading cause of morbidity in adults with tuberous sclerosis. While benign, these tumors are capable of provoking life threatening hemorrhage and replacement of the kidney parenchyma, resulting in renal failure. The histogenesis of these tumors is currently unclear, although currently, we believe these tumors arise from "perivascular epithelioid cells" of which no normal counterpart has been convincingly demonstrated. Recently, stem cell precursors have been recognized that can give rise to smooth muscle and melanocytes. These precursors have been shown to express the neural stem cell marker NG2 and L1. In order to determine whether angiomyolipomas, which exhibit smooth muscle and melanocytic phenotypes, express NG2 and L1, we performed immunocytochemistry on a cell line derived from a human angiomyolipoma, and found that these cells are uniformly positive. Immunohistochemistry of human angiomyolipoma specimens revealed uniform staining of tumor cells, while renal cell carcinomas revealed positivity only of angiogenic vessels. These results support a novel histogenesis of angiomyolipoma as a defect in differentiation of stem cell precursors.
Resumo:
Nephroblastoma or Wilms' tumor is a pediatric renal malignancy that is the most frequently occurring childhood solid tumor. Approximately 1-2% of children with Wilms' tumor also present with aniridia, a congenital absence of all or part of the iris of the eye. These children also have high rates of genitourinary anomalies and mental retardation resulting in what is called the WAGR (Wilms' tumor, aniridia, genitourinary anomaly, mental retardation) syndrome. Cytogenetic analysis of metaphase chromosomes from these patients revealed a consistent deletion of band P13 on chromosome 11. These observations suggest close physical linkage between the disease-related loci, and further imply that development of each phenotype results from the loss of normal gene function.^ The objective of this work is to understand the molecular events at chromosome band 11p13 that are essential to the development of sporadic Wilms' tumor and sporadic aniridia. Two human/hamster somatic cell hybrids have been used to identify sixteen independent DNA probes that map to this segment of the human genome. These newly identified DNA probes and four previously reported probes (CAT, FSHB, D11S16, and HBVIS) have been used to subdivide 11p13 into five intervals defined by overlapping constitutional deletions from several WAGR patients. A long-range physical map of 11p13 has been constructed using each of these probes in Southern blot analysis of genomic DNA after digestion with infrequently cutting restriction enzymes and pulse-field gel electrophoresis. This map, established primarily with MluI and NotI, spans approximately 13 $\times$ 10$\sp{6}$ bp and encompasses deletion and translocation breakpoints associated with genitourinary anomalies, aniridia, and sporadic Wilms' tumor. This complete physical map of human chromosome band 11p13 enables us to localize the genes for sporadic Wilms' tumor and sporadic aniridia to a small number of specific NotI fragments. ^