48 resultados para DRUG-RESISTANCE
Resumo:
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western countries. The interaction between CLL cells and the bone marrow stromal environment is thought to play a major role in promoting the leukemia cell survival and drug resistance. My dissertation works proved a novel biochemical mechanism by which the bone marrow stromal cells exert a profound influence on the redox status of primary CLL cells and enhance their ability to sustain oxidative stress and drug treatment. Fresh leukemia cells isolated from the peripheral blood of CLL patients exhibited two major redox alterations when they were cultured alone: a significant decrease in cellular glutathione (GSH) and an increase in basal ROS levels. However, when cultured in the presence of bone marrow stromal cells, CLL cells restored their redox balance with an increased synthesis of GSH, a decrease in spontaneous apoptosis, and an improved cell survival. Further study showed that CLL cells were under intrinsic ROS stress and highly dependent on GSH for survival, and that the bone marrow stromal cells promoted GSH synthesis in CLL cells through a novel biochemical mechanism. Cysteine is a limiting substrate for GSH synthesis and is chemically unstable. Cells normally obtain cysteine by uptaking the more stable and abundant precursor cystine from the tissue environment and convert it to cysteine intracellularly. I showed that CLL cells had limited ability to take up extracellular cystine for GSH synthesis due to their low expression of the transporter Xc-, but had normal ability to uptake cysteine. In the co-culture system, the bone marrow stromal cells effectively took up cystine and reduced it to cysteine for secretion into the tissue microenvironment to be taken up by CLL cells for GSH synthesis. The elevated GSH in CLL cells in the presence of bone marrow stromal cells significantly protected the leukemia cells from stress-induced apoptosis, and rendered them resistant to standard therapeutic agents such as fludarabine and oxaliplatin. Importantly, disabling of this protective mechanism by depletion of cellular GSH using a pharmacological approach potently sensitized CLL cells to drug treatment, and effectively enhanced the cytotoxic action of fludarabine and oxaliplatin against CLL in the presence of stromal cells. This study reveals a key biochemical mechanism of leukemia-stromal cells interaction, and identifies a new therapeutic strategy to overcome drug resistance in vivo.
Resumo:
Resistance of tumors to pharmacologic agents poses a significant problem in the treatment of human malignancies. This study overviews the scope of clinical resistance and focuses upon current research attempts toward investigation of the phenomenon of multidrug resistance (MDR).^ The objective of this investigation was to determine whether gene amplification had a role in the development of the MDR phenotype in Chinese hamster ovary cells (CHO) primarily selected for resistance to vincristine (VCR). A DNA fragment, previously shown to be amplified in two independently derived Chinese hamster cell lines exhibiting the MDR phenotype, was also amplified in VCR hamster lines. Sequences flanking this fragment were shown to contain coding information for a 4.3 kb transcript overproduced in VCR cells. These sequences were not enriched in double minute DNA preparations isolated from VCR cells. There was an approximately forty-fold increase in both the level of gene amplification and transcript overproduction in the VCR cell lines, independent of the level of primary resistance. This DNA amplification and overproduction of the 4.3 kb transcript was also demonstrated in CHO cells independently selected for resistance to Adriamycin and vinblastine.^ All the DNA sequences of two hamster cDNA clones containing 785 and 932 base pair inserts showed direct homology to the published mouse mdr sequences (about 90%). This sequence conservation held for only portions of the gene when the human mdr1 sequences were compared with those from either the mouse or hamster.^ Somatic cell hybrids, constructed between VCR CHO cells and sensitive murine cells, were used to determine whether there was a functional relationship between the chromosome bearing the amplified sequences and the MDR phenotype. Concordant segregation between vincristine resistance, the MDR phenotype, the presence of MDR-associated amplified sequences, overexpression of the mRNA encoded by these sequences, overexpression of the mRNA encoded by these sequences, and CHO chromosome Z1 was consistent with the hypothesis that there is an amplified gene on chromosome Z1 of the VCR CHO cells which is responsible for MDR in these cells. ^
Resumo:
Recently, it has become apparent that DNA repair mechanisms are involved in the malignant progression and resistance to therapy of gliomas. Many investigators have shown that increased levels of O6-methyl guanine DNA alkyltransferase, a DNA monoalkyl adduct repair enzyme, are correlated with resistance of malignant glioma cell lines to nitrosourea-based chemotherapy. Three important DNA excision repair genes ERCC1 (excision repair cross complementation group 1), ERCC2 (excision repair cross complementation group 2), and ERCC6 (excision repair cross complementation group 6) have been studied in human tumors. Gene copy number variation of ERCC1 and ERCC2 has been observed in primary glioma tissues. A number of reports describing a relationship between ERCC1 gene alterations and resistance to anti-cancer drugs have been also described. The levels of ERCC1 gene expression, however, have not been correlated with drug resistance in gliomas. The expression of ERCC6 gene transcribes has been shown to vary with tissue types and to be highest in the brain. There have been no comprehensive studies so far, however, of ERCC6 gene expression and molecular alterations in malignant glioma. This project examined the ERCC1 expression levels and correlated them with cisplatin resistance in malignant glioma cell lines. We also examined the molecular alterations of ERCC6 gene in primary glioma tissues and cells and analyzed whether these alterations are related to tumor progression and chemotherapy resistance. Our results indicate the presence of mutations and/or deletions in exons II and V of the ERCC6 gene, and these alterations are more frequent in exon II. Furthermore, the mutations and/or deletions in exon II were shown to be associated with increased malignant grade of gliomas. The results on the Levels of ERCC1 gene transcripts showed that expression levels correlate with cisplatin resistance. The increase in ERCC1 mRNA induced by cisplatin could be down-regulated by cyclosporin A and herbimycin A. The results of this study are likely to provide useful information for clinical treatment of human gliomas. ^
Resumo:
Mammalian cells express 7 β-tubulin isotypes in a tissue specific manner. This has long fueled the speculation that different isotypes carry out different functions. To provide direct evidence for their functional significance, class III, IVa, and VI β-tubulin cDNAs were cloned into a tetracycline regulated expression vector and stably transfected Chinese hamster ovary cell lines expressing different levels of ectopic β-tubulin were compared for effects on microtubule organization, microtubule assembly and sensitivity to antimitotic drugs. It was found that all three isotypes coassembled with endogenous β-tubulin. βVI expression caused distinct microtubule rearrangements including microtubule dissociation from the centrosome and accumulation at the cell periphery; whereas expression of βIII and βVIa caused no observable changes in the interphase microtubule network. Overexpression of all 3 isotypes caused spindle malformation and mitotic defects. Both βIII and βIVa disrupted microtubule assembly in proportion to their abundance and thereby conferred supersensitivity to microtubule depolymerizing drugs. In contrast, βVI stabilized microtubules at low stoichiometry and thus conferred resistance to many microtubule destabilizing drugs but not vinblastine. The 3 isotypes caused differing responses to microtubule stabilizing drugs. Expression of βIII conferred paclitaxel resistance while βVI did not. Low expression of βIVa caused supersensitivity to paclitaxel, whereas higher expression resulted in the loss of supersensitivity. The results suggest that βIVa may possess an enhanced ability to bind paclitaxel that increases sensitivity to the drug and acts substoichiometrically. At high levels of βVIa expression, however, microtubule disruptive effects counteract the assembly promoting pressure exerted by increased paclitaxel binding, and drug supersensitivity is lost. From this study, I concluded that β-tubulin isotypes behave differently from each other in terms of microtubule organization, microtubule assembly and dynamics, and antimitotic drug sensitivity. The isotype composition of cell can impart subtle to dramatic effects on the properties of microtubules leading to potential functional consequences and opening the opportunity to exploit differences in microtubule isotype composition for therapeutic gain. ^
Resumo:
The mechanisms responsible for anti-cancer drug (including Taxol) treatment failure have not been identified. In cell culture model systems, many β-tubulin, but very few α-tubulin, mutations have been associated with resistance to Taxol. To test what, if any, mutations in α-tubulin can cause resistance, we transfected a randomly mutagenized α-tubulin cDNA into Chinese hamster ovary (CHO) cells and isolated drug resistant cell lines. A total of 12 mutations were identified in this way and all of them were confirmed to confer Taxol resistance. Furthermore, all cells expressing mutant α-tubulin had less microtubule polymer. Some cells also had abnormal nuclei and enlarged cell bodies. The data indicate that α-tubulin mutations confer Taxol resistance by disrupting microtubule assembly, a mechanism consistent with a large number of previously described β-tubulin mutations. ^ Because α- and β-tubulin are almost identical in their three dimensional structure, we hypothesized that mutations discovered in one subunit, when introduced into the other, would produce similar effects on microtubule assembly and drug resistance. 9 α- and 2 β-tubulin mutations were tested. The results were complex. Some mutations produced similar changes in microtubule assembly and drug resistance irrespective of the subunit in which they were introduced, but others produced opposite effects. Still one mutation produced resistance when present in one subunit, yet had no effect when present on the other; and one mutation that produced Taxol resistance when present in α-tubulin, resulted in assembly-defective tubulin when it was present in β-tubulin. The results suggest that in most cases, the same amino acid modification in α- and β-tubulin affects the microtubule structure and assembly in a similar way. ^ Finally, we tested whether three β-tubulin mutations found in patient tumors could confer resistance to Taxol by recreating the mutations in a β-tubulin cDNA and transfecting it into CHO cells. We found that all three mutations conferred Taxol resistance, but to different extents. Again, microtubule assembly in the transfectants was disrupted, suggesting that mutations in β-tubulin are a potential problem in cancer therapeutics. ^
Resumo:
Vietnam is one of the countries with the highest prevalence and incidence of tuberculosis (TB) in the world (1). Although Vietnam has had many successes in TB control, it still faces the challenge of drug resistant and multidrug-resistant tuberculosis (MDR-TB). MDR-TB appears to be relatively stable, but data on MDR-TB continues to be scarce and routine testing of all isolates for drug susceptibility is not performed under Vietnam's National Tuberculosis Program (6). Pham Ngoc Thach Hospital (PNT), the leading tuberculosis and lung disease hospital in Ho Chi Minh City, serves as a reference hospital and laboratory for both Ho Chi Minh City and the Southern Vietnam region. This study is an unmatched, nested case-control study consisting of a secondary analysis of a previously created dataset composed of drug susceptibility and basic demographic data from a cohort of patients diagnosed with tuberculosis at PNT from 2003 through 2007 in order to calculate the prevalence of resistance among acid-fast bacilli smear-positive patients. The susceptibility records for the years 2003-2004 were not representative of the entire population, but over the years 2005-2007 the investigator found a decrease in resistance to all primary TB drugs on which records were available, as well as MDR-TB. Overall, females showed a higher proportion of resistance to TB drugs than males, and females had a greater likelihood of presenting with MDR-TB than males (OR=1.77). Persons 35-54 had greater likelihood of having MDR-TB than younger and older age groups. Among the population with HIV data, HIV-positivity was associated with greater likelihood of MDR-TB (OR=1.70, 95% CI=0.97-3.11). This study shows that rates of TB drug resistance are high, but declining, in one of Vietnam's largest TB hospitals, and that females and HIV-positive individuals are possible high-risk groups in this population.^
Resumo:
Over 1.2 million Americans are currently living with a traumatic spinal cord injury (SCI). Despite the need for effective therapies, there are currently no proven effective treatments that can improve recovery of function in SCI patients. Many therapeutic compounds have shown promise in preclinical models of SCI, but all of these have fallen short in clinical trials. P-glycoprotein (Pgp) is an active transporter expressed on capillary endothelial cell membranes at the blood-spinal cord barrier (BSCB). Pgp limits passive diffusion of blood-borne drugs into the CNS, by actively extruding drugs from the endothelial cell membrane. Pgp can become pathologically up-regulated, thus greatly impeding therapeutic drug delivery (‘multidrug resistance’). Importantly, many drugs that have been evaluated for the treatment of SCI are Pgp substrates. We hypothesized that Pgp-mediated drug resistance diminishes the delivery and efficacy of neuroprotective drugs following SCI. We observed a progressive, spatial spread of Pgp overexpression within the injured spinal cord. To assess Pgp function, we examined spinal cord uptake of systemically-delivered riluzole, a drug that is currently being evaluated in clinical trials as an SCI intervention. Blood-to-spinal cord riluzole penetration was reduced following SCI in wild-type but not Pgp-null rats, highlighting a critical role for Pgp in mediating spinal cord drug resistance after injury. Others have shown that pro-inflammatory signaling drives Pgp up-regulation in cancer and epilepsy. We have detected inflammation in both acutely- and chronically-injured spinal cord tissue. We therefore evaluated the ability of the dual COX-/5-LOX inhibitor licofelone to attenuate Pgp-mediated drug resistance following SCI. Licofelone treatment both reduced spinal cord Pgp levels and enhanced spinal cord riluzole bioavailability following SCI. Thus, we propose that licofelone may offer a new combinatorial treatment strategy to enhance spinal cord drug delivery following SCI. Additionally, we assessed the ability of licofelone, riluzole, or both to enhance recovery of locomotor function following SCI. We found that licofelone treatment conferred a significant improvement in hindlimb function that was sustained through the end of the study. In contrast, riluzole did not improve functional outcome. We therefore conclude that licofelone holds promise as a potential neuroprotective intervention for SCI.
Resumo:
We designed and synthesized a novel daunorubicin (DNR) analogue that effectively circumvents P-glycoprotein (P-gp)-mediated drug resistance. The fully protected carbohydrate intermediate 1,2-dibromoacosamine was prepared from acosamine and effectively coupled to daunomycinone in high yield. Deprotection under alkaline conditions yielded 2$\sp\prime$-bromo-4$\sp\prime$-epidaunorubicin (WP401). The in vitro cytotoxicity and cellular and molecular pharmacology of WP401 were compared with those of DNR in a panel of wild-type cell lines (KB-3-1, P388S, and HL60S) and their multidrug-resistant (MDR) counterparts (KB-V1, P388/DOX, and HL60/DOX). Fluorescent spectrophotometry, flow cytometry, and confocal laser scanning microscopy were used to measure intracellular accumulation, retention, and subcellular distribution of these agents. All MDR cell lines exhibited reduced DNR uptake that was restored, upon incubation with either verapamil (VER) or cyclosporin A (CSA), to the level found in sensitive cell lines. In contrast, the uptake of WP401 was essentially the same in the absence or presence of VER or CSA in all tested cell lines. The in vitro cytotoxicity of WP401 was similar to that of DNR in the sensitive cell lines but significantly higher in resistant cell lines (resistance index (RI) of 2-6 for WP401 vs 75-85 for DNR). To ascertain whether drug-mediated cytotoxicity and retention were accompanied by DNA strand breaks, DNA single- and double-strand breaks were assessed by alkaline elution. High levels of such breaks were obtained using 0.1-2 $\mu$g/mL of WP401 in both sensitive and resistant cells. In contrast, DNR caused strand breaks only in sensitive cells and not much in resistant cells. We also compared drug-induced DNA fragmentation similar to that induced by DNR. However, in P-gp-positive cells, WP401 induced 2- to 5-fold more DNA fragmentation than DNR. This increased DNA strand breakage by WP401 was correlated with its increased uptake and cytotoxicity in these cell lines. Overall these results indicate that WP401 is more cytotoxic than DNR in MDR cells and that this phenomenon might be related to the reduced basicity of the amino group and increased lipophilicity of WP401. ^
Resumo:
The considerable search for synergistic agents in cancer research is motivated by the therapeutic benefits achieved by combining anti-cancer agents. Synergistic agents make it possible to reduce dosage while maintaining or enhancing a desired effect. Other favorable outcomes of synergistic agents include reduction in toxicity and minimizing or delaying drug resistance. Dose-response assessment and drug-drug interaction analysis play an important part in the drug discovery process, however analysis are often poorly done. This dissertation is an effort to notably improve dose-response assessment and drug-drug interaction analysis. The most commonly used method in published analysis is the Median-Effect Principle/Combination Index method (Chou and Talalay, 1984). The Median-Effect Principle/Combination Index method leads to inefficiency by ignoring important sources of variation inherent in dose-response data and discarding data points that do not fit the Median-Effect Principle. Previous work has shown that the conventional method yields a high rate of false positives (Boik, Boik, Newman, 2008; Hennessey, Rosner, Bast, Chen, 2010) and, in some cases, low power to detect synergy. There is a great need for improving the current methodology. We developed a Bayesian framework for dose-response modeling and drug-drug interaction analysis. First, we developed a hierarchical meta-regression dose-response model that accounts for various sources of variation and uncertainty and allows one to incorporate knowledge from prior studies into the current analysis, thus offering a more efficient and reliable inference. Second, in the case that parametric dose-response models do not fit the data, we developed a practical and flexible nonparametric regression method for meta-analysis of independently repeated dose-response experiments. Third, and lastly, we developed a method, based on Loewe additivity that allows one to quantitatively assess interaction between two agents combined at a fixed dose ratio. The proposed method makes a comprehensive and honest account of uncertainty within drug interaction assessment. Extensive simulation studies show that the novel methodology improves the screening process of effective/synergistic agents and reduces the incidence of type I error. We consider an ovarian cancer cell line study that investigates the combined effect of DNA methylation inhibitors and histone deacetylation inhibitors in human ovarian cancer cell lines. The hypothesis is that the combination of DNA methylation inhibitors and histone deacetylation inhibitors will enhance antiproliferative activity in human ovarian cancer cell lines compared to treatment with each inhibitor alone. By applying the proposed Bayesian methodology, in vitro synergy was declared for DNA methylation inhibitor, 5-AZA-2'-deoxycytidine combined with one histone deacetylation inhibitor, suberoylanilide hydroxamic acid or trichostatin A in the cell lines HEY and SKOV3. This suggests potential new epigenetic therapies in cell growth inhibition of ovarian cancer cells.
Resumo:
BACKGROUND: The Enterococcus faecium genogroup, referred to as clonal complex 17 (CC17), seems to possess multiple determinants that increase its ability to survive and cause disease in nosocomial environments. METHODS: Using 53 clinical and geographically diverse US E. faecium isolates dating from 1971 to 1994, we determined the multilocus sequence type; the presence of 16 putative virulence genes (hyl(Efm), esp(Efm), and fms genes); resistance to ampicillin (AMP) and vancomycin (VAN); and high-level resistance to gentamicin and streptomycin. RESULTS: Overall, 16 different sequence types (STs), mostly CC17 isolates, were identified in 9 different regions of the United States. The earliest CC17 isolates were part of an outbreak that occurred in 1982 in Richmond, Virginia. The characteristics of CC17 isolates included increases in resistance to AMP, the presence of hyl(Efm) and esp(Efm), emergence of resistance to VAN, and the presence of at least 13 of 14 fms genes. Eight of 41 of the early isolates with resistance to AMP, however, were not in CC17. CONCLUSIONS: Although not all early US AMP isolates were clonally related, E. faecium CC17 isolates have been circulating in the United States since at least 1982 and appear to have progressively acquired additional virulence and antibiotic resistance determinants, perhaps explaining the recent success of this species in the hospital environment.
Resumo:
The involvement of tubulin mutations as a cause of clinical drug resistance has been intensely debated in recent years. In the studies described here, we used transfection to test whether beta1-tubulin mutations and polymorphisms found in cancer patients are able to confer resistance to drugs that target microtubules. Three of four mutations (A185T, A248V, R306C, but not G437S) that we tested caused paclitaxel resistance, as indicated by the following observations: (a) essentially 100% of cells selected in paclitaxel contained transfected mutant tubulin; (b) paclitaxel resistance could be turned off using tetracycline to turn off transgene expression; (c) paclitaxel resistance increased as mutant tubulin production increased. All the paclitaxel resistance mutations disrupted microtubule assembly, conferred increased sensitivity to microtubule-disruptive drugs, and produced defects in mitosis. The results are consistent with a mechanism in which tubulin mutations alter microtubule stability in a way that counteracts drug action. These studies show that human tumor cells can acquire spontaneous mutations in beta1-tubulin that cause resistance to paclitaxel, and suggest that patients with some polymorphisms in beta1-tubulin may require higher drug concentrations for effective therapy.
Resumo:
The cfr (chloramphenicol-florfenicol resistance) gene encodes a 23S rRNA methyltransferase that confers resistance to linezolid. Detection of linezolid resistance was evaluated in the first cfr-carrying human hospital isolate of linezolid and methicillin-resistant Staphylococcus aureus (designated MRSA CM-05) by dilution and diffusion methods (including Etest). The presence of cfr was investigated in isolates of staphylococci colonizing the patient's household contacts and clinical isolates recovered from patients in the same unit where MRSA CM-05 was isolated. Additionally, 68 chloramphenicol-resistant Colombian MRSA isolates recovered from hospitals between 2001 and 2004 were screened for the presence of the cfr gene. In addition to erm(B), the erm(A) gene was also detected in CM-05. The isolate belonged to sequence type 5 and carried staphylococcal chromosomal cassette mec type I. We were unable to detect the cfr gene in any of the human staphylococci screened (either clinical or colonizing isolates). Agar and broth dilution methods detected linezolid resistance in CM-05. However, the Etest and disk diffusion methods failed to detect resistance after 24 h of incubation. Oxazolidinone resistance mediated by the cfr gene is rare, and acquisition by a human isolate appears to be a recent event in Colombia. The detection of cfr-mediated linezolid resistance might be compromised by the use of the disk diffusion or Etest method.
Resumo:
Vertebrates produce at least seven distinct beta-tubulin isotypes that coassemble into all cellular microtubules. The functional differences among these tubulin isoforms are largely unknown, but recent studies indicate that tubulin composition can affect microtubule properties and cellular microtubule-dependent behavior. One of the isotypes whose incorporation causes the largest change in microtubule assembly is beta5-tubulin. Overexpression of this isotype can almost completely destroy the microtubule network, yet it appears to be required in smaller amounts for normal mitotic progression. Moderate levels of overexpression can also confer paclitaxel resistance. Experiments using chimeric constructs and site-directed mutagenesis now indicate that the hypervariable C-terminal region of beta5 plays no role in these phenotypes. Instead, we demonstrate that two residues found in beta5 (Ser-239 and Ser-365) are each sufficient to inhibit microtubule assembly and confer paclitaxel resistance when introduced into beta1-tubulin; yet the single mutation of residue Ser-239 in beta5 eliminates its ability to confer these phenotypes. Despite the high degree of conservation among beta-tubulin isotypes, mutations affecting residue 365 demonstrate that amino acid substitutions can be context sensitive; i.e. an amino acid change in one isotype will not necessarily produce the same phenotype when introduced into a different isotype. Modeling studies indicate that residue Cys-239 of beta1-tubulin is close to a highly conserved Cys-354 residue suggesting the possibility that disulfide formation could play a significant role in the stability of microtubules formed with beta1- but not with beta5-tubulin.
Resumo:
The hyl(Efm) gene (encoding a putative hyaluronidase) has been found almost exclusively in Enterococcus faecium clinical isolates, and recently, it was shown to be on a plasmid which increased the ability of E. faecium strains to colonize the gastrointestinal tract. In this work, the results of mating experiments between hyl(Efm)-containing strains of E. faecium belonging to clonal cluster 17 and isolated in the United States and Colombia indicated that the hyl(Efm) gene of these strains is also carried on large plasmids (>145 kb) which we showed transfer readily from clinical strains to E. faecium hosts. Cotransfer of resistance to vancomycin and high-level resistance (HLR) to aminoglycosides (gentamicin and streptomycin) and erythromycin was also observed. The vanA gene cluster and gentamicin resistance determinants were genetically linked to hyl(Efm), whereas erm(B) and ant(6)-I, conferring macrolide-lincosamide-streptogramin B resistance and HLR to streptomycin, respectively, were not. A hyl(Efm)-positive transconjugant resulting from a mating between a well-characterized endocarditis strain [TX0016 (DO)] and a derivative of a fecal strain of E. faecium from a healthy human volunteer (TX1330RF) exhibited increased virulence in a mouse peritonitis model. These results indicate that E. faecium strains use a strategy which involves the recruitment into the same genetic unit of antibiotic resistance genes and determinants that increase the ability to produce disease. Our findings indicate that the acquisition of the hyl(Efm) plasmids may explain, at least in part, the recent successful emergence of some E. faecium strains as nosocomial pathogens.
Resumo:
Linezolid, which targets the ribosome, is a new synthetic antibiotic that is used for treatment of infections caused by Gram-positive pathogens. Clinical resistance to linezolid, so far, has been developing only slowly and has involved exclusively target site mutations. We have discovered that linezolid resistance in a methicillin-resistant Staphylococcus aureus hospital strain from Colombia is determined by the presence of the cfr gene whose product, Cfr methyltransferase, modifies adenosine at position 2503 in 23S rRNA in the large ribosomal subunit. The molecular model of the linezolid-ribosome complex reveals localization of A2503 within the drug binding site. The natural function of cfr likely involves protection against natural antibiotics whose site of action overlaps that of linezolid. In the chromosome of the clinical strain, cfr is linked to ermB, a gene responsible for dimethylation of A2058 in 23S rRNA. Coexpression of these two genes confers resistance to all the clinically relevant antibiotics that target the large ribosomal subunit. The association of the ermB/cfr operon with transposon and plasmid genetic elements indicates its possible mobile nature. This is the first example of clinical resistance to the synthetic drug linezolid which involves a natural resistance gene with the capability of disseminating among Gram-positive pathogenic strains.