18 resultados para Cornelia, mother of the Gracchi, b. ca.B.C. 175.
Resumo:
A retrospective cohort study was designed to evaluate the compliance of vaccination dose schedules and vaccination effectiveness at 12 months of age among a total of 226 high-risk infants born to HBsAg-positive pregnant women who participated in the HBV Perinatal Vaccination Program in Houston, Texas, 1991-1993.^ The seroprevalence of HBsAg-positivity was 0.5% among pregnant women who attended prenatal clinics in Houston, Texas, 1991-1993. The Asian women had the highest seroprevalence rate (5.9%), followed by black (1.9%), white (0.7%), and Hispanic women (0.3%). The seroprevalence of HBsAg increased with age (p =.02); the highest seroprevalence rate found among the $>$40 group (5.4%), followed by the 20-40 age group, and the $<$20 age. A steady increase was observed in the number of infants, from 45 in 1991, to 103 in 1993. The majority of these infants were black (58.0%), followed by Hispanic (28.8%), Asian (8.4%), and white infants (4.0%). Significant increases were observed from 1991 to 1993 in the number of infants who initiated vaccination (86.7% to 98.1%, p =.02) and in those infants who were post-tested at 12 months of age (24.4% to 44.7%, p =.04). During the same period an increase was also observed in the number of infants who completed the vaccination dose schedules (62.2% to 72.8%, p =.37). The compliance rates were not statistically significant regarding gender, race or ethnicity, health service area, medical referral source, and residential geographic areas. About 56.0% of the reasons cited for non-compliance among the 144 infants who neither completed the vaccination dose schedules nor received the 12-month post-test were "moved," and "no response/not at home." A total of 82 infants completed the vaccination dose schedules and were post-tested at 12 months of age for anti-HBs-positivity, and 96.3% of these infants seroconverted. A race-specific statistically significant seroconversion difference was found among infants who received all vaccination doses and were post-tested at 12 months of age (100% for the black and the white, 96.3% for the Hispanic, and 80.0% for the Asians infants, p =.05).^ From a public health perspective, the HBV Perinatal Vaccination Program improved during its first three years (1991-1993). It was effective in preventing perinatal HBV infection in almost 97.0% of infants who were vaccinated and post-tested. To increase the efficiency and efficacy of the program, the following recommendations are proposed: (1) Increase the vaccination compliance rate by educating and improving the tracking, communication and coordination channels with those individuals involved in the process and by increasing staff resources. (2) Reduce the post-test vaccination non-compliance by post-testing infants simultaneously with third vaccination dose at 6 months of age, and only post-test those infants who are anti-HBs-negative at 9-12 months of age. (Abstract shortened by UMI.) ^
Resumo:
Transforming growth factor-b (TGF-b) is a cytokine that plays essential roles in regulating embryonic development and tissue homeostasis. In normal cells, TGF-b exerts an anti-proliferative effect. TGF-b inhibits cell growth by controlling a cytostatic program that includes activation of the cyclin-dependent kinase inhibitors p15Ink4B and p21WAF1/Cip1 and repression of c-myc. In contrast to normal cells, many tumors are resistant to the anti-proliferative effect of TGF-b. In several types of tumors, particularly those of gastrointestinal origin, resistance to the anti-proliferative effect of TGF-b has been attributed to TGF-b receptor or Smad mutations. However, these mutations are absent from many other types of tumors that are resistant to TGF-b-mediated growth inhibition. The transcription factor encoded by the homeobox patterning gene DLX4 is overexpressed in a wide range of malignancies. In this study, I demonstrated that DLX4 blocks the anti-proliferative effect of TGF-b by disabling key transcriptional control mechanisms of the TGF-b cytostatic program. Specifically, DLX4 blocked the ability of TGF-b to induce expression of p15Ink4B and p21WAF1/Cip1 by directly binding to Smad4 and to Sp1. Binding of DLX4 to Smad4 prevented Smad4 from forming transcriptional complexes with Smad2 and Smad3, whereas binding of DLX4 to Sp1 inhibited DNA-binding activity of Sp1. In addition, DLX4 induced expression of c-myc, a repressor of p15Ink4B and p21WAF1/Cip1 transcription, independently of TGF-b signaling. The ability of DLX4 to counteract key transcriptional control mechanisms of the TGF-b cytostatic program could explain in part the resistance of tumors to the anti-proliferative effect of TGF-b. This study provides a molecular explanation as to why tumors are resistant to the anti-proliferative effect of TGF-b in the absence of mutations in the TGF-b signaling pathway. Furthermore, this study also provides insights into how aberrant activation of a developmental patterning gene promotes tumor pathogenesis.
Resumo:
I studied the apolipoprotein (apo) B 3$\sp\prime$ variable number tandem repeat (VNTR) and did computer simulations of the stepwise mutation model to address four questions: (1) How did the apo B VNTR originate? (2) What is the mutational mechanism of repeat number change at the apo B VNTR? (3) To what extent are population and molecular level events responsible for the determination of the contemporary apo B allele frequency distribution? (4) Can VNTR allele frequency distributions be explained by a simple and conservative mutation-drift model? I used three general approaches to address these questions: (1) I characterized the apo B VNTR region in non-human primate species; (2) I constructed haplotypes of polymorphic markers flanking the apo B VNTR in a sample of individuals from Lorrain, France and studied the associations between the flanking-marker haplotypes and apo B VNTR size; (3) I did computer simulations of the one-step stepwise mutation model and compared the results to real data in terms of four allele frequency distribution characteristics.^ The results of this work have allowed me to conclude that the apo B VNTR originated after an initial duplication of a sequence which is still present as a single copy sequence in New World monkey species. I conclude that this locus did not originate by the transposition of an array of repeats from somewhere else in the genome. It is unlikely that recombination is the primary mutational mechanism. Furthermore, the clustered nature of these associations implicates a stepwise mutational mechanism. From the high frequencies of certain haplotype-allele size combinations, it is evident that population level events have also been important in the determination of the apo B VNTR allele frequency distribution. Results from computer simulations of the one-step stepwise mutation model have allowed me to conclude that bimodal and multimodal allele frequency distributions are not unexpected at loci evolving via stepwise mutation mechanisms. Short tandem repeat loci fit the stepwise mutation model best, followed by microsatellite loci. I therefore conclude that there are differences in the mutational mechanisms of VNTR loci as classed by repeat unit size. (Abstract shortened by UMI.) ^
Resumo:
Proper execution of mitosis requires the accurate segregation of replicated DNA into each daughter cell. The highly conserved mitotic kinase AIR-2/Aurora B is a dynamic protein that interacts with subsets of cofactors and substrates to coordinate chromosome segregation and cytokinesis in Caenorhabdiris elegans. To identify components of the AIR-2 regulatory pathway, a genome-wide RNAi-based screen for suppressors of air-2 temperature-sensitive mutant lethality was conducted. Here, I present evidence that two classes of suppressors identified in this screen are bona fide regulators of the AIR-2 kinase. The strongest suppressor cdc-48.3, encodes an Afg2/Spaf-related Cdc48-like AAA+ ATPase that regulates AIR-2 kinase activity and stability during C. elegans embryogenesis. Loss of CDC-48.3 suppresses the lethality of air-2 mutant embryos, marked by the restoration of the dynamic behavior of AIR-2 and rescue of chromosome segregation and cytokinesis defects. Loss of CDC-48.3 leads to mitotic delays and abnormal accumulation of AIR-2 during late telophase/mitotic exit. In addition, AIR-2 kinase activity is significantly upregulated from metaphase through mitotic exit in CDC-48.3 depleted embryos. Inhibition of the AIR-2 kinase is dependent on (1) a direct physical interaction between CDC-48.3 and AIR-2, and (2) CDC-48.3 ATPase activity. Importantly, the increase in AIR-2 kinase activity does not correlate with the stabilization of AIR-2 in late mitosis. Hence, CDC-48.3 is a bi-functional inhibitor of AIR-2 that is likely to act via distinct mechanisms. The second class of suppressors consists of psy-2/smk-1 and pph-4.1, which encode two components of the conserved PP4 phosphatase complex that is essential for spindle assembly, chromosome segregation, and overall mitotic progression. AIR-2 and its substrates are likely to be targets of this complex since mitotic AIR-2 kinase activity is significantly increased during mitosis when either PSY-2/SMK-1 or PPH-4.l is depleted. Altogether, this study demonstrates that during the C. elegans embryonic cell cycle, regulators including the CDC-48.3 ATPase and PP4 phosphatase complex interact with and control the kinase activity, targeting behavior and protein stability of the Aurora B kinase to ensure accurate and timely progression of mitosis. ^
Resumo:
Dialysis patients are at high risk for hepatitis B infection, which is a serious but preventable disease. Prevention strategies include the administration of the hepatitis B vaccine. Dialysis patients have been noted to have a poor immune response to the vaccine and lose immunity more rapidly. The long term immunogenicity of the hepatitis B vaccine has not been well defined in pediatric dialysis patients especially if administered during infancy as a routine childhood immunization.^ Purpose. The aim of this study was to determine the median duration of hepatitis B immunity and to study the effect of vaccination timing and other cofactors on the duration of hepatitis B immunity in pediatric dialysis patients.^ Methods. Duration of hepatitis B immunity was determined by Kaplan-Meier survival analysis. Comparison of stratified survival analysis was performed using log-rank analysis. Multivariate analysis by Cox regression was used to estimate hazard ratios for the effect of timing of vaccine administration and other covariates on the duration of hepatitis B immunity.^ Results. 193 patients (163 incident patients) had complete data available for analysis. Mean age was 11.2±5.8 years and mean ESRD duration was 59.3±97.8 months. Kaplan-Meier analysis showed that the total median overall duration of immunity (since the time of the primary vaccine series) was 112.7 months (95% CI: 96.6, 124.4), whereas the median overall duration of immunity for incident patients was 106.3 months (95% CI: 93.93, 124.44). Incident patients had a median dialysis duration of hepatitis B immunity equal to 37.1 months (95% CI: 24.16, 72.26). Multivariate adjusted analysis showed that there was a significant difference between patients based on the timing of hepatitis B vaccination administration (p<0.001). Patients immunized after the start of dialysis had a hazard ratio of 6.13 (2.87, 13.08) for loss of hepatitis B immunity compared to patients immunized as infants (p<0.001).^ Conclusion. This study confirms that patients immunized after dialysis onset have an overall shorter duration of hepatitis B immunity as measured by hepatitis B antibody titers and after the start of dialysis, protective antibody titer levels in pediatric dialysis patients wane rapidly compared to healthy children.^
Resumo:
The promyelocytic leukemia protein PML is a growth suppressor essential for induction of apoptosis by diverse apoptotic stimuli. The mechanism by which PML regulates cell death remains unclear. In this study we found that ectopic expression of PML potentiates cell death in the TNFα-resistant tumor line U2OS and significantly sensitized these cells to apoptosis induced by TNFα in a p53-independent manner. Our study demonstrated that both PML and PML/TNFα-induced cell death are associated with DNA fragmentation, activation of caspase-3, -7, -8, and degradation of DFF/ICAD. Furthermore, we found that PML-induced and PML/TNFα-induced cell death could be blocked by the caspase-8 inhibitors crmA and c-FLIP, but not by Bcl-2, the inhibitor of mitochondria-mediated apoptotic pathway. These findings indicate that this cell death event is initiated through the death receptor-dependent apoptosis pathway. Our study further showed that PML recruits NF-kappa B (NF-κB) to the PML nuclear body, blocks NF-κB binding to its cognate enhancer, and represses its transactivation function with the C-terminal region. Therefore PML inhibits the NF-κB survival pathway. Overexpression of NF-κB rescued cell death induced by PML and PML/TNFκ. These results imply that PML is a functional repressor of NF-κB. This notion was further supported by the finding that the PML−/− mouse embryo fibroblasts (MEFs) are more resistant than the wild-type MEFs to TNFκ-induced apoptosis. In conclusion, our studies convincingly demonstrated that PML potentiates cell death through inhibition of the NF-κB survival pathway. Activation of NF-κB frequently occurs during oncogenesis. Our study here suggests that a loss of PML function enhances the NF-κB survival pathway and this event may contribute to tumorigenesis. ^
Resumo:
The human colon tumor cell line, LS174T, has been shown to have four major components of the drug metabolizing system; cytochrome b$\sb5$ reductase, cytochrome b$\sb5$, cytochrome P450 reductase and cytochrome P450, by activity measurements, spectral studies and antibody cross-reactivity. Cytochrome P450IA1 is induced by benzanthracene in these cells as shown by activity with the specific substrate, ethoxyresorufin, cross-reactivity with rabbit antibodies to rat IA1, and by a hybridizing band on a Northern blot to a rat IA1 probe.^ Further, this system has proven responsive to various inducers and conditions of growth. The enzyme activities were found stable over limited cell passages with control values of 0.03 and 0.13 $\mu$mol/min/mg protein for NADPH and NADH cytochrome c (cyt c) reducing activity, 0.05 nmol cyt b$\sb5$ per milligram and 0.013 nmol cytochrome P450 per milligram of microsomal protein. Phenobarbital/hydrocortisone treatment showed a consistent, but not always significant increase in the NADPH and NADH cyt c reducing activity and benzanthracene treatment an increase in the NADH cyt c reducing activity. Delta-aminolevulinic acid (0.5mM) caused a significant decrease in the specific activity of all enzyme contents and activities tested.^ Finally, the cytochrome b$\sb5$ to cytochrome P450, by the coordinate induction of the cytochrome b$\sb5$ pathway by P450 inducers, by the high ratio of NADH to NADPH ethoxycoumarin deethylase activity in uninduced cell microsomes, and by the increase in NADH and NADPH ethoxycoumarin deethylase activity when the microsomes were treated with potassium cyanide, a desaturase inhibitor. ^
Resumo:
Coagulase-negative staphylococci (CNS) are recognized as important pathogens and are particularly associated with foreign body infections. S. epidermidis accounts for approximately 75% of the infections caused by CNS. Three genes, sdrF, sdrG, and sdrH, were identified by screening a S. epidermidis genomic library with a probe encompassing the serine-aspartate dipeptide repeat-encoding region (region R) of clfA from S. aureus. SdrG has significant amino acid identity to ClfA, ClfB and other surface proteins of S. aureus. SdrG is also similar to a protein (Fbe) recently described by Nilsson, et al. (Infection and Immunity, 1998, 66:2666–73) from S. epidermidis. The N-terminal domain (A region) of SdrG was expressed as a his-tag fusion protein in E. coli. In an ELISA, this protein, rSdrG(50-597) was shown to bind specifically to fibrinogen (Fg). Western ligand blot analysis showed that SdrG binds the Bβ chain of Fg. To further characterize the rSdrG(50-597)-Fg interaction, truncates of the Fg Bβ chain were made and expressed as recombinant proteins in E. coli. SdrG was shown to bind the full-length Bβ chain (1462), as well as the N-terminal three-quarters (1-341), the N-terminal one-half (1-220) and the N-terminal one-quarter (1-95) Bβ chain constructs. rSdrG(50-597) failed to bind to the recombinant truncates that lacked the N-terminal 25 amino acid residues of this polypeptide suggesting that SdrG recognizes a site within this region of the Bβ chain. Inhibition ELISAs have shown that peptide mimetics, including β1–25, and β6–20, encompassing this 25 residue region can inhibit binding of rSdrG(50-597) to Fg coated wells. Using fluorescence polarization we were able to determine an equilibrium constant (KD) for the interaction of rSdrG(50-597) with the Fg Bβ chain peptide β1–25. The labeled peptide was shown to bind to rSdrG(50-597) with a KD of 0.14 ± 0.01μM. Because rSdrG(50-597) recognizes a site in the Fg Bβ chain close to the thrombin cleavage site, we investigated the possibility of the rSdrG(50-597) site either overlapping or lying close to this cleavage site. An ELISA showed that rSdrG(50-597) binding to thrombin-treated Fg was significantly reduced. In a clot inhibition assay rSdrG(50-597) was able to inhibit fibrin clot formation in a concentration dependent manner. Furthermore, rSdrG(50-597) was able to inhibit clot formation by preventing the release of fibrinopeptide B as determined by HPLC. To further define the interaction between rSdrG(50-597) and peptide β6–20, we utilized an alanine amino acid replacement strategy. The residues in β6–20 that appear to be important in rSdrG(50-597) binding to Fg, were confirmed by the rSdrG(273-597)-β6–20 co-crystal structure that was recently solved by our collaborators at University of Alabama-Birmingham. Additionally, rSdrG(50-597) was not able to bind to Fg from different animal species, rather it bound specifically to human Fg in an ELISA. This suggests that the sequence variation between Fg Bβ chains of different species, specifically with in the N-terminal 25 residues, affects the ability of rSdrG(50-597) binding to Fg, and this may explain why S. epidermidis is primarily a human pathogen. ^
Resumo:
The neu gene encodes a 185,000-Da membrane glycoprotein that is highly homologous to epidermal growth factor receptor. It is frequently overexpressed or amplified in human breast carcinomas and ovarian cancers, which correlates with a poor prognosis for patients. The importance of neu gene regulation is noted by the fact that many breast cancer cells overexpress the neu gene without proportional gene amplification. The mechanism for that is unclear. My initial finding of neu autoregulation led to a realization that defects in neu autoregulation pathway may contribute to neu overexpression in tumor cells. I have found in the nontransformed NIH 3T3 model system that (i) the neu gene product autorepresses its own promoter activity, (ii) the neu gene promoter contains a novel enhancer, (iii) neu autorepression is mediated through this enhancer by inhibition of the enhancer activity, and (iv) c-myc expression serves as an intermediate step downstream from the membrane bound neu-encoded receptor in this complicated feedback inhibition pathway.^ In addition, a part of my research is studying the neu-encoded receptor molecule. I have generated a construct coding the neu ligand-binding domain and demonstrated that (i) the neu ligand-binding domain is a secretory peptide, (ii) it inhibits the normal neu-associated tyrosine kinase but not activated neu-associated tyrosine kinase. My study provided experimental evidence for the mechanisms of neu gene activation. ^
Resumo:
Overexpression of the hepatocyte growth factor receptor (c-Met) and its ligand, the hepatocyte growth factor (HGF), and a constitutively active mutant of the epidermal growth factor receptor (∆EGFR/EGFRvIII), occur frequently in glioblastoma. c-Met is activated in a ligand-dependent manner by HGF or in a ligand-independent manner by ∆EGFR. Dysregulated c-Met signaling contributes to the aggressive phenotype of glioblastoma, yet the mechanisms underlying the production of HGF in glioblastoma are poorly understood. We found a positive correlation between HGF and c-Met expression in glioblastoma, suggesting that they are coregulated. This is supported by the finding that in a c-Met/HGF axis-dependent glioblastoma cell line, shRNA-mediated silencing of c-Met, or treatment with the c-Met inhibitor SU11274, attenuated HGF expression. Biologically, c-Met knockdown decreased anchorage-independent colony formation and the tumorigenicity of intracranial xenografts. Building on prior findings that ∆EGFR enhanced c-Met activation, we found that ∆EGFR also led to increased HGF expression, which was reversed upon ∆EGFR inhibition with AG1478. ∆EGFR required c-Met to maintain elevated HGF expression, colony formation of glioblastoma cells, and the tumorigenicity of orthotopic xenografts. An unbiased mass spectrometry-based approach identified phosphotyrosine-related signaling changes that occurred with c-Met knockdown in a glioblastoma cell line expressing ΔEGFR and in parental cells. Notably, phosphorylation of STAT3, a master regulator of the mesenchymal GBM subtype and a known target of ∆EGFR, also decreased when c-Met was silenced in these cells, suggesting that the signals from these receptors converge on STAT3. Using a STAT3 inhibitor, WP1193, we showed that STAT3 inhibition decreased HGF mRNA expression in ΔEGFR-expressing glioblastoma cells. Consistent with these findings, constitutively active STAT3 partially restored HGF expression and anchorage-independent growth of c-Met knockdown glioblastoma cells that overexpressed ΔEGFR. We found that higher levels of HGF and c-Met expression associated with the mesenchymal GBM subtype. Taken together, these results suggest that the activity of c-Met regulates the expression of HGF in glioblastoma cells, that ∆EGFR feeds positively into this autocrine loop, that signaling of the two receptors together modulate HGF expression via STAT3, and that the HGF/c-Met axis may therefore be a good additional target for therapy of mesenchymal GBM tumors.
Resumo:
Background. Hepatitis B virus infection is one of major causes of acute and chronic hepatitis, cirrhosis of the liver, and primary hepatocellular carcinoma. Hepatitis B and its long term consequences are major health problems in the United States. Hepatitis B virus can be vertically transmitted from mother to infant during birth. Hepatitis B vaccination at birth is the most effective measure to prevent the newborn from HBV infection and its consequences, and is part of any robust perinatal hepatitis B prevention program following ACIP recommendations. Universal vaccination of the new born will prevent HBV infection during early childhood and, assuming that children receive the three dosages of the vaccine, it will also prevent adolescent and adult infections. Hepatitis B vaccination is now recommended as part of a comprehensive strategy to eliminate HBV transmission in the United States. ^ Objective. (1)To assess if the hepatitis B vaccination rates of newborn babies have improved after the 2005 ACIP recommendations. (2) To identify factors that affects the implementation of ACIP recommendation for hepatitis B vaccination in newborn babies. These factors will encourage ongoing improvement by identifying successful efforts and pinpointing areas that fall short and need attention. Additional focus areas may be identified to accelerate progress in eliminating perinatal HBV transmission.^ Methods. This review includes information from all pertinent articles, reviews, National immunization survey (NIS) surveys, reports, peer reviewed literature and web sources that were published after 1991.The key words to be used for selecting the articles are: "Perinatal Hepatitis B Prevention program", "Universal Hepatitis B vaccination of newborn babies", "ACIP Recommendations." The data gathered will be supplemented with an analysis of vaccination rates using the National Immunization Survey (NIS) birth dose coverage data.^ Results. The data collected in the NIS of 2009 reveals that the national coverage for birth dose of HepB increased to 60.8% from 50.1% in 2006. The largest increase observed for the birth dose in the past 5 years is from 2008 which increased from 55.3 % to 60.8% in 2009. By state, coverage ranged from 22.8% in Vermont to 80.7% in Michigan. %. Overall, in 2009 the estimated vaccination rates are in higher ranges for most states compared to the estimated vaccination rates in 2006. States vary widely in hepatitis B vaccination rates and in their compliance with the 2005 ACIP recommendation. There are many factors at various stages that might affect the successful implementation of the new ACIP recommendation as revealed in literature review. ^ Conclusions. HBV perinatal transmission can be eliminated, but it requires identifying the gaps and measures taken to increase the current vaccination coverage, ensuring timely administration of post exposure immunoprophylaxis and continued evaluations of the impact of immunization recommendations.^
Resumo:
B-lymphocyte stimulator (BLyS), a relatively recently recognized member of the tumor necrosis factor ligand family (TNF), is a potent cell-survival factor expressed in many hematopoietic cells. BLyS binds to 3 TNF-R receptors, TACI, BCMA, BAFF-R, to regulate B-cell survival, differentiation, and proliferation. The mechanisms involved in BLYS gene expression and regulation are still incompletely understood. In this study, we examined BLYS gene expression, function, and regulation in B-cell non-Hodgkin lymphoma (NHL-B) cells. Our studies indicate that BLyS is constitutively expressed in aggressive NHL-B cells, including large B-cell lymphoma (LBCL) and mantle cell lymphoma (MCL), playing an important role in the survival and proliferation of malignant B cells. We found that 2 important transcription factors, NF-kappaB and NFAT, are involved in regulating BLyS expression through at least one NF-kappaB and 2 NFAT binding sites in the BLYS promoter. We also provide evidence suggesting that the constitutive activation of NF-kappaB and BLyS in NHL-B cells forms a positive feedback loop associated with lymphoma cell survival and proliferation. Our findings indicate that constitutive NF-kappaB and NFAT activations are crucial transcriptional regulators of the BLyS survival pathway in malignant B cells that could be therapeutic targets in aggressive NHL-B.
Resumo:
An important question in biology is to understand the role of specific gene products in regulating embryogenesis and cellular differentiation. Many of the regulatory proteins possess specific motifs, such as the homeodomain, basic helix-loop-helix structure, zinc finger, and leucine zipper. These sequence motifs participate in specific protein-DNA, protein-RNA, and protein-protein interactions, and are important for the function of these regulatory proteins.^ The human rfp (ret finger protein) belongs to a novel zinc finger protein family, the B box zinc finger family. Most of the B box proteins, including rfp, have a conserved tripartite motif, consisting of two novel zinc fingers (the RING finger and the B box) and a coiled-coil domain. Interestingly, a fusion protein between the tripartite motif of rfp and the tyrosine kinase domain of c-ret has transforming activity. In this study, we examined the expression of rfp during mouse development, and characterized the role of the tripartite motif in rfp function.^ We cloned the mouse rfp cDNA, which shares a 98.4% homology with the human sequence at amino acid level. Such strikingly high degree of homology indicates the high evolutionary pressure on the conservation of the sequence, suggesting that rfp may have an important function. Using the somatic cell hybrid system, we assigned the rfp gene to mouse chromosome 13 and human chromosome 6. Rfp transcripts and protein were ubiquitous in day 10.5-13.5 mouse embryos; however, they were restricted in adult mice, with the highest level of expression in the testis. Rfp expression in the testis is detected only in late pachytene spermatocytes and round spermatids. In both embryos and spermatogenic cells, rfp protein was distributed within cell nuclei in a punctate pattern, similar to the PODs (PML oncogenic domains) observed with another B box protein, PML. In cultured mammalian cells, we found that rfp was indeed co-localized to the PODs with PML. Using the yeast two-hybrid system, we showed that the rfp could specifically interact with PML, and that the interaction was dependent on the distal portion of the rfp coiled-coil domain.^ We also showed that rfp could form homodimers, and both the B box and coiled-coil domain were required for proper dimerization. It seems that the proximal portion of the coiled-coil domain provides the interacting interface, while the B box zinc finger orients the coil and maintains the correct structure of the whole molecule. Our data are consistent with the zinc-binding property and structural analysis of the B box. The RING finger seems to be involved in rfp nuclear localization through interaction with other proteins. We believe that homodimerization and interaction with PML are important for the normal interaction of rfp during development and differentiation. In addition, rfp homodimerization may also be essential for the oncogenic activation of the rfp-ret fusion protein. ^
Resumo:
The feasibility of establishment of continuously proliferating growth factor-dependent human B lymphocytes was investigated. Normal B lymphocytes prepared from peripheral venous blood were stimulated with a variety of known polyclonal B cell activators, in the continuous presence of various cytokine preparations. Continuously proliferating growth factor-dependent B cell populations were obtained from cultures activated with either insoluble anti-IgM ((mu)-chain specific), soluble anti-IgM, heat-killed Staphylococcus aureus Cowen I (SAC), or dextran sulphate (DxS), in the continuous presence of exogenously added growth factor preparations containing either IL-1, IL-2 and BCGF, or BCGF alone. Although growth factor-dependent B cell lines were obtained via all three methods of activation, the correlation of mode of activation and growth factor preparation proved to be critical. B cell lines could not be established with anti-(mu) activation in the presence of only BCGF; however, B cell lines were successfully obtained with SAC or DxS activation from those cultures continuously replenished with only BCGF. These cultured B lymphocyte populations were routinely maintained in logarithmic-phase growth in the presence of exogenously added growth factor, and exhibited a population doubling time of approximately 36 hours. They were shown to specifically absorb BCGF, suggesting the presence of membrane receptors for it. Also, these cultured B cells have been utilized for the development of a microassay for the assessment of a M(,r) 12,000-14,000 B cell growth factor activity that is accurate, sensitive, and precise. The pronounced sensitivity of this bioassay beyond that of the conventional peripheral blood B cell assay has aided in the purification to homogeneity of natural product extracellular BCGF (EC-BCGF), and in the determination of the nucleotide sequence for a gene coding for a protein exhibiting BCGF activity. Additionally, these B cell lines specifically absorb, and proliferate in the presence of, an affinity-purified M(,r) 60,000 trypsin-sensitive intracellular protein derived from freshly isolated human T lymphocytes, providing evidence for a putative intracellular precursor of EC-BCGF, or a novel high molecular weight BCGF species. ^
Resumo:
Viral hepatitis is a significant public health problem worldwide and is due to viral infections that are classified as Hepatitis A, B, C, D, and E. Hepatitis B is one of the five known hepatic viruses. A safe and effective vaccine for Hepatitis B was first developed in 1981, and became adopted into national immunization programs targeting infants since 1990 and adolescents since 1995. In the U.S., this vaccination schedule has led to an 82% reduction in incidence from 8.5 cases per 100,000 in 1990 to 1.5 cases per 100,000 in 2007. Although there has been a decline in infection among adolescents, there is still a large burden of hepatitis B infection among adults and minorities. There is very little research in regards to vaccination gaps among adults. Using the National Health and Nutrition Examination Survey (NHANES) question "{Have you/Has SP (Study Participant)} ever received the 3-dose series of the hepatitis B vaccine?" the existence of racial/ethnic gaps using a cross-sectional study design was explored. In this study, other variables such as age, gender, socioeconomic variables (federal poverty line, educational attainment), and behavioral factors (sexual practices, self-report of men having sex with men, and intravenous drug use) were examined. We found that the current vaccination programs and policies for Hepatitis B had eliminated racial and ethnic disparities in Hepatitis B vaccination, but that a low coverage exists particularly for adults who engage in high risk behaviors. This study found a statistically significant 10% gap in Hepatitis B vaccination between those who have and those who do not have access to health insurance.^