19 resultados para Contrast-modulated


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The risk of second malignant neoplasms (SMNs) following prostate radiotherapy is a concern due to the large population of survivors and decreasing age at diagnosis. It is known that parallel-opposed beam proton therapy carries a lower risk than photon IMRT. However, a comparison of SMN risk following proton and photon arc therapies has not previously been reported. The purpose of this study was to predict the ratio of excess relative risk (RRR) of SMN incidence following proton arc therapy to that after volumetric modulated arc therapy (VMAT). Additionally, we investigated the impact of margin size and the effect of risk-minimized proton beam weighting on predicted RRR. Physician-approved treatment plans were created for both modalities for three patients. Therapeutic dose was obtained with differential dose-volume histograms from the treatment planning system, and stray dose was estimated from the literature or calculated with Monte Carlo simulations. Then, various risk models were applied to the total dose. Additional treatment plans were also investigated with varying margin size and risk-minimized proton beam weighting. The mean RRR ranged from 0.74 to 0.99, depending on risk model. The additional treatment plans revealed that the RRR remained approximately constant with varying margin size, and that the predicted RRR was reduced by 12% using a risk-minimized proton arc therapy planning technique. In conclusion, proton arc therapy was found to provide an advantage over VMAT in regard to predicted risk of SMN following prostate radiotherapy. This advantage was independent of margin size and was amplified with risk-optimized proton beam weighting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine whether a 3-mm isotropic target margin adequately covers the prostate and seminal vesicles (SVs) during administration of an intensity-modulated radiation therapy (IMRT) treatment fraction, assuming that daily image-guided setup is performed just before each fraction. MATERIALS AND METHODS: In-room computed tomographic (CT) scans were acquired immediately before and after a daily treatment fraction in 46 patients with prostate cancer. An eight-field IMRT plan was designed using the pre-fraction CT with a 3-mm margin and subsequently recalculated on the post-fraction CT. For convenience of comparison, dose plans were scaled to full course of treatment (75.6 Gy). Dose coverage was assessed on the post-treatment CT image set. RESULTS: During one treatment fraction (21.4+/-5.5 min), there were reductions in the volumes of the prostate and SVs receiving the prescribed dose (median reduction 0.1% and 1.0%, respectively, p<0.001) and in the minimum dose to 0.1 cm(3) of their volumes (median reduction 0.5 and 1.5 Gy, p<0.001). Of the 46 patients, three patients' prostates and eight patients' SVs did not maintain dose coverage above 70 Gy. Rectal filling correlated with decreased percentage-volume of SV receiving 75.6, 70, and 60 Gy (p<0.02). CONCLUSIONS: The 3-mm intrafractional margin was adequate for prostate dose coverage. However, a significant subset of patients lost SV dose coverage. The rectal volume change significantly affected SV dose coverage. For advanced-stage prostate cancers, we recommend to use larger margins or improve organ immobilization (such as with a rectal balloon) to ensure SV coverage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compromised blood-spinal cord barrier (BSCB) is a factor in the outcome following traumatic spinal cord injury (SCI). Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis and vascular permeability. The role of VEGF in SCI is controversial. Relatively little is known about the spatial and temporal changes in the BSCB permeability following administration of VEGF in experimental SCI. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies were performed to noninvasively follow spatial and temporal changes in the BSCB permeability following acute administration of VEGF in experimental SCI over a post-injury period of 56 days. The DCE-MRI data was analyzed using a two-compartment pharmacokinetic model. Animals were assessed for open field locomotion using the Basso-Beattie-Bresnahan score. These studies demonstrate that the BSCB permeability was greater at all time points in the VEGF-treated animals compared to saline controls, most significantly in the epicenter region of injury. Although a significant temporal reduction in the BSCB permeability was observed in the VEGF-treated animals, BSCB permeability remained elevated even during the chronic phase. VEGF treatment resulted in earlier improvement in locomotor ability during the chronic phase of SCI. This study suggests a beneficial role of acutely administered VEGF in hastening neurobehavioral recovery after SCI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate normal tissue dose reduction in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform by tracking the multileaf collimator (MLC) apertures with the accelerator jaws. Methods: Clinical radiation treatment plans for 10 thoracic, 3 pediatric and 3 head and neck patients were converted to plans with the jaws tracking each segment’s MLC apertures. Each segment was then renormalized to account for the change in collimator scatter to obtain target coverage within 1% of that in the original plan. The new plans were compared to the original plans in a commercial radiation treatment planning system (TPS). Reduction in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 in the cumulative dose-volume histogram for the following structures: total lung minus GTV (gross target volume), heart, esophagus, spinal cord, liver, parotids, and brainstem. In order to validate the accuracy of our beam model, MLC transmission measurements were made and compared to those predicted by the TPS. Results: The greatest change between the original plan and new plan occurred at lower dose levels. The reduction in V20 was never more than 6.3% and was typically less than 1% for all patients. The reduction in V5 was 16.7% maximum and was typically less than 3% for all patients. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1 % and thus uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. Conclusion: The amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT does not appear to be clinically significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensity modulated radiation therapy (IMRT) is a technique that delivers a highly conformal dose distribution to a target volume while attempting to maximally spare the surrounding normal tissues. IMRT is a common treatment modality used for treating head and neck (H&N) cancers, and the presence of many critical structures in this region requires accurate treatment delivery. The Radiological Physics Center (RPC) acts as both a remote and on-site quality assurance agency that credentials institutions participating in clinical trials. To date, about 30% of all IMRT participants have failed the RPC’s remote audit using the IMRT H&N phantom. The purpose of this project is to evaluate possible causes of H&N IMRT delivery errors observed by the RPC, specifically IMRT treatment plan complexity and the use of improper dosimetry data from machines that were thought to be matched but in reality were not. Eight H&N IMRT plans with a range of complexity defined by total MU (1460-3466), number of segments (54-225), and modulation complexity scores (MCS) (0.181-0.609) were created in Pinnacle v.8m. These plans were delivered to the RPC’s H&N phantom on a single Varian Clinac. One of the IMRT plans (1851 MU, 88 segments, and MCS=0.469) was equivalent to the median H&N plan from 130 previous RPC H&N phantom irradiations. This average IMRT plan was also delivered on four matched Varian Clinac machines and the dose distribution calculated using a different 6MV beam model. Radiochromic film and TLD within the phantom were used to analyze the dose profiles and absolute doses, respectively. The measured and calculated were compared to evaluate the dosimetric accuracy. All deliveries met the RPC acceptance criteria of ±7% absolute dose difference and 4 mm distance-to-agreement (DTA). Additionally, gamma index analysis was performed for all deliveries using a ±7%/4mm and ±5%/3mm criteria. Increasing the treatment plan complexity by varying the MU, number of segments, or varying the MCS resulted in no clear trend toward an increase in dosimetric error determined by the absolute dose difference, DTA, or gamma index. Varying the delivery machines as well as the beam model (use of a Clinac 6EX 6MV beam model vs. Clinac 21EX 6MV model), also did not show any clear trend towards an increased dosimetric error using the same criteria indicated above.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyses of rat T1 kininogen gene/chloramphenicol acetyltransferase (T1K/CAT) constructs revealed two regions important for tissue-specific and induced regulation of T1 kininogen.^ Although the T1 kininogen gene is inducible by inflammatory cytokines, a highly homologous K kininogen gene is minimally responsive. Moreover, the basal expression of a KK/CAT construct was 5- to 7-fold higher than that of the analogous T1K/CAT construct. To examine the molecular basis of this differential regulation, a series of promoter swapping experiments was carried out. Our transfection results showed that at least two regions in the K kininogen gene are important for its high basal expression: a distal 19-bp region (C box) constituted a binding site for CCAAT/enhancer binding protein (C/EBP) family proteins and a proximal 66-bp region contained two adjacent binding sites for hepatocyte nuclear factor-3 (HNF-3). The distal HNF-3 binding site from the K kininogen promoter demonstrated a stronger affinity than that from the T1 kininogen promoter. Since C/EBP and HNF-3 are highly enriched in the liver and known to enhance transcription of liver-specific genes, differential binding affinities of these factors accounted for the higher basal expression of the K kininogen gene.^ In contrast to the K kininogen C box, the T1 kininogen C box does not bind C/EBP presumably due to their two-nucleotide divergence. This sequence divergence, however, converts it to a consensus binding sequence for two IL-6-inducible transcription factors--IL-6 response element binding protein and acute-phase response factor. To functionally determine whether C box sequences are important for their differential acute-phase response, T1 and K kininogen C boxes were swapped and analyzed after transfection into Hep3B cells. Our results showed that the T1 kininogen C box is indeed one of the IL-6 response elements in T1 kininogen promoter. Furthermore, its function can be modulated by a 5$\sp\prime$-adjacent C/EBP-binding site (B box) whose mutation significantly reduced the overall induced activity. Moreover, this B box is the target site for binding and transactivation of another IL-6 inducible transcription factor C/EBP$\delta.$ Evolutionary divergence of a few critical nucleotides can either lead to subtle changes in the binding affinities of a given transcription factor or convert a binding sequence for a constitutive factor to a site recognized by an inducible factor. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamate is the major excitatory neurotransmitter in the retina and serves as the synaptic messenger for the three classes of neurons which constitute the vertical pathway--the photoreceptors, bipolar cells and ganglion cells. In addition, the glutamate system has been localized morphologically, pharmacologically as well as molecularly during the first postnatal week of development before synaptogenesis occurs. The role which glutamate plays in the maturing visual system is complex but ranges from mediating developmental neurotoxicity to inducing neurite outgrowth.^ Nitric oxide/cGMP is a novel intercellular messenger which is thought to act in concert with the glutamate system in regulating a variety of cellular processes in the brain as well as retina, most notably neurotoxicity. Several developmental activities including programmed cell death, synapse elimination and synaptic reorganization are possible functions of cellular regulation modulated by nitric oxide as well as glutamate.^ The purpose of this thesis is to (1) biochemically characterize the endogenous pools of glutamate and determine what fraction exists extracellularly; (2) examine the morphological expression of NO producing cells in developing retina; (3) test the functional coupling of the NMDA subtype of glutamate receptor to the NO system by examining neurotoxicity which has roles in both the maturing and adult retina.^ Biochemical sampling of perfusates collected from the photoreceptor surface of ex vivo retina demonstrated that although the total pool of glutamate present at birth is relatively modest, a high percentage resides in extracellular pools. As a result, immature neurons without significant synaptic connections survive and develop in a highly glutamatergic environment which has been shown to be toxic in the adult retina.^ The interaction of the glutamate system with the NO system has been postulated to regulate neuronal survival. We therefore examined the developmental expression of the enzyme responsible for producing NO, nitric oxide synthase (NOS), using an antibody to the constitutive form of NOS found in the brain. The neurons thought to produce the majority of NO in the adult retina, a subpopulation of widefield amacrine cells, were not immunoreactive until the end of the second postnatal week. However, a unique developmental expression was observed in the ganglion cell layer and developing outer nuclear layer of the retina during the first postnatal week. We postulate NO producing neurons may not be present in a mature configuration therefore permitting neuronal survival in a highly glutamatergic microenvironment and allowing NO to play a development-specific role at this time.^ The next set of experiments constituted a functional test of the hypothesis that the absence of the prototypic NO producing cells in developing retina protects immature neurons against glutamate toxicity. An explant culture system developed in order to examine cellular responses of immature and adult neurons to glutamate toxicity showed that immature neurons were affected by NMDA but were less responsive to NMDA and NO mediated toxicity. In contrast, adult explants exhibited significant NMDA toxicity which was attenuated by NMDA antagonists, 2-amino-5-phosphonovaleric acid (APV), dextromethorphan (Dex) and N$\rm\sp{G}$-D-methyl arginine (metARG). These results indicated that pan-retinal neurotoxicity via the NMDA receptor and/or NO activation occurred in the adult retina but was not significant in the neonate. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bcr-Abl fusion oncogene which resulted from a balanced reciprocal translocation between chromosome 9 and 22, t(9;22)(q11, q34), encodes a 210 KD elevated tyrosine specific protein kinase that is found in more than 95 percent of chronic myelogenous leukemia patients (CML). Increase of level of phosphorylation of tyrosine is observed on cell cycle regulatory proteins in cells overexpressing the Bcr-Abl oncogene, which activates multiple signaling pathways. In addition, distinct signals are required for transforming susceptible fibroblast and hematopoietic cells, and the minimal signals essential for transforming hematopoietic cells are yet to be defined. In the present study, we first established a tetracycline repressible p210$\rm\sp{bcr-abl}$ expression system in a murine myeloid cell line 32D c13, which depends on IL3 to grow in the presence of tetracycline and proliferate independent of IL3 in the absence of tetracycline. Interestingly, one of these sublines does not form tumors in athymic nude mice suggesting that these cells may not be completely transformed. These cells also exhibit a dose-dependent growth and expression of p210$\rm\sp{bcr-abl}$ at varying concentrations of tetracycline in the culture. However, p210$\rm\sp{bcr-abl}$ rescues IL3 deprivation induced apoptosis in a non-dose dependent fashion. DNA genotoxic damage induced by gamma-irradiation activates c-Abl tyrosine kinase, the cellular homologue of p210$\rm\sp{bcr-abl},$ and leads to activation of p38 MAP kinase in the cells. However, in the presence of p210$\rm\sp{bcr-abl}$ the irradiation failed to activate the p38 MAP kinase as examined by an antibody against phosphorylated p38 MAP kinase. Similarly, an altered tyrosine phosphorylation of the JAK1-STAT1 pathways was identified in cells constitutively overexpressing p210$\rm\sp{bcr-abl}.$ This may provided a molecular mechanism for altered therapeutic response of CML patients to IFN-$\alpha.$^ Bcr-Abl oncoprotein has multiple functional domains which have been identified by the work of others. The Bcr tetramerization domain, which may function to stabilize the association of the Bcr-Abl with actin filaments in p210$\rm\sp{bcr-abl}$ susceptible cells, are essential for transforming both fibroblast and hematopoietic cells. We designed a transcription unit encoding first 160 amino acids polypeptide of Bcr protein to test if this polypeptide can inhibit the transforming activity of the p210$\rm\sp{bcr-abl}$ oncoprotein in the 32D c13 cells. When this vector was transfected transiently along with the p210$\rm\sp{bcr-abl}$ expression vector, it can block the transforming activity of p210$\rm\sp{bcr-abl}.$ On the other hand, the retinoblastoma tumor suppressor protein (Rb), a naturally occurring negative regulator of the c-Abl kinase, the cellular homologue of Bcr-Abl oncoprotein, binds to and inhibits the c-Abl kinase in a cell cycle dependent manner. A polypeptide obtained from the carboxyl terminal end of the retinoblastoma tumor suppressor protein, in which the nuclear localization signal was mutated, was used to inhibit the kinase activity of the p210$\rm\sp{bcr-abl}$ in the cytoplasm. This polypeptide, called Rb MC-box, and its wild type form, Rb C-box, when overexpressed in the 32D cells are mainly localized in the cytoplasm. Cotransfection of a plasmid transcription unit coding for this polypeptide and the gene for the p210$\rm\sp{bcr-abl}$ resulted in reduced plating efficiency of p210$\rm\sp{bcr-abl}$ transfected IL3 independent 32D cells. Together, these results may lead to a molecular approach to therapy of CML and an in vitro assay system to identify new targets to which an inhibitory polypeptide transcription unit may be directed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work was to develop a comprehensive IMSRT QA procedure that examined, using EPID dosimetry and Monte Carlo (MC) calculations, each step in the treatment planning and delivery process. These steps included verification of the field shaping, treatment planning system (RTPS) dose calculations, and patient dose delivery. Verification of each step in the treatment process is assumed to result in correct dose delivery to the patient. ^ The accelerator MC model was verified against commissioning data for field sizes from 0.8 × 0.8 cm 2 to 10 × 10 cm 2. Depth doses were within 2% local percent difference (LPD) in low gradient regions and 1 mm distance to agreement (DTA) in high gradient regions. Lateral profiles were within 2% LPD in low gradient regions and 1 mm DTA in high gradient regions. Calculated output factors were within 1% of measurement for field sizes ≥1 × 1 cm2. ^ The measured and calculated pretreatment EPID dose patterns were compared using criteria of 5% LPD, 1 mm DTA, or 2% of central axis pixel value with ≥95% of compared points required to pass for successful verification. Pretreatment field verification resulted in 97% percent of the points passing. ^ The RTPS and Monte Carlo phantom dose calculations were compared using 5% LPD, 2 mm DTA, or 2% of the maximum dose with ≥95% of compared points required passing for successful verification. RTPS calculation verification resulted in 97% percent of the points passing. ^ The measured and calculated EPID exit dose patterns were compared using criteria of 5% LPD, 1 mm DTA, or 2% of central axis pixel value with ≥95% of compared points required to pass for successful verification. Exit dose verification resulted in 97% percent of the points passing. ^ Each of the processes above verified an individual step in the treatment planning and delivery process. The combination of these verification steps ensures accurate treatment delivery to the patient. This work shows that Monte Carlo calculations and EPID dosimetry can be used to quantitatively verify IMSRT treatments resulting in improved patient care and, potentially, improved clinical outcome. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usage of intensity modulated radiotherapy (IMRT) treatments necessitates a significant amount of patient-specific quality assurance (QA). This research has investigated the precision and accuracy of Kodak EDR2 film measurements for IMRT verifications, the use of comparisons between 2D dose calculations and measurements to improve treatment plan beam models, and the dosimetric impact of delivery errors. New measurement techniques and software were developed and used clinically at M. D. Anderson Cancer Center. The software implemented two new dose comparison parameters, the 2D normalized agreement test (NAT) and the scalar NAT index. A single-film calibration technique using multileaf collimator (MLC) delivery was developed. EDR2 film's optical density response was found to be sensitive to several factors: radiation time, length of time between exposure and processing, and phantom material. Precision of EDR2 film measurements was found to be better than 1%. For IMRT verification, EDR2 film measurements agreed with ion chamber results to 2%/2mm accuracy for single-beam fluence map verifications and to 5%/2mm for transverse plane measurements of complete plan dose distributions. The same system was used to quantitatively optimize the radiation field offset and MLC transmission beam modeling parameters for Varian MLCs. While scalar dose comparison metrics can work well for optimization purposes, the influence of external parameters on the dose discrepancies must be minimized. The ability of 2D verifications to detect delivery errors was tested with simulated data. The dosimetric characteristics of delivery errors were compared to patient-specific clinical IMRT verifications. For the clinical verifications, the NAT index and percent of pixels failing the gamma index were exponentially distributed and dependent upon the measurement phantom but not the treatment site. Delivery errors affecting all beams in the treatment plan were flagged by the NAT index, although delivery errors impacting only one beam could not be differentiated from routine clinical verification discrepancies. Clinical use of this system will flag outliers, allow physicists to examine their causes, and perhaps improve the level of agreement between radiation dose distribution measurements and calculations. The principles used to design and evaluate this system are extensible to future multidimensional dose measurements and comparisons. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monte Carlo simulation has been conducted to investigate parameter estimation and hypothesis testing in some well known adaptive randomization procedures. The four urn models studied are Randomized Play-the-Winner (RPW), Randomized Pôlya Urn (RPU), Birth and Death Urn with Immigration (BDUI), and Drop-the-Loses Urn (DL). Two sequential estimation methods, the sequential maximum likelihood estimation (SMLE) and the doubly adaptive biased coin design (DABC), are simulated at three optimal allocation targets that minimize the expected number of failures under the assumption of constant variance of simple difference (RSIHR), relative risk (ORR), and odds ratio (OOR) respectively. Log likelihood ratio test and three Wald-type tests (simple difference, log of relative risk, log of odds ratio) are compared in different adaptive procedures. ^ Simulation results indicates that although RPW is slightly better in assigning more patients to the superior treatment, the DL method is considerably less variable and the test statistics have better normality. When compared with SMLE, DABC has slightly higher overall response rate with lower variance, but has larger bias and variance in parameter estimation. Additionally, the test statistics in SMLE have better normality and lower type I error rate, and the power of hypothesis testing is more comparable with the equal randomization. Usually, RSIHR has the highest power among the 3 optimal allocation ratios. However, the ORR allocation has better power and lower type I error rate when the log of relative risk is the test statistics. The number of expected failures in ORR is smaller than RSIHR. It is also shown that the simple difference of response rates has the worst normality among all 4 test statistics. The power of hypothesis test is always inflated when simple difference is used. On the other hand, the normality of the log likelihood ratio test statistics is robust against the change of adaptive randomization procedures. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

External beam radiation therapy is used to treat nearly half of the more than 200,000 new cases of prostate cancer diagnosed in the United States each year. During a radiation therapy treatment, healthy tissues in the path of the therapeutic beam are exposed to high doses. In addition, the whole body is exposed to a low-dose bath of unwanted scatter radiation from the pelvis and leakage radiation from the treatment unit. As a result, survivors of radiation therapy for prostate cancer face an elevated risk of developing a radiogenic second cancer. Recently, proton therapy has been shown to reduce the dose delivered by the therapeutic beam to normal tissues during treatment compared to intensity modulated x-ray therapy (IMXT, the current standard of care). However, the magnitude of stray radiation doses from proton therapy, and their impact on this incidence of radiogenic second cancers, was not known. ^ The risk of a radiogenic second cancer following proton therapy for prostate cancer relative to IMXT was determined for 3 patients of large, median, and small anatomical stature. Doses delivered to healthy tissues from the therapeutic beam were obtained from treatment planning system calculations. Stray doses from IMXT were taken from the literature, while stray doses from proton therapy were simulated using a Monte Carlo model of a passive scattering treatment unit and an anthropomorphic phantom. Baseline risk models were taken from the Biological Effects of Ionizing Radiation VII report. A sensitivity analysis was conducted to characterize the uncertainty of risk calculations to uncertainties in the risk model, the relative biological effectiveness (RBE) of neutrons for carcinogenesis, and inter-patient anatomical variations. ^ The risk projections revealed that proton therapy carries a lower risk for radiogenic second cancer incidence following prostate irradiation compared to IMXT. The sensitivity analysis revealed that the results of the risk analysis depended only weakly on uncertainties in the risk model and inter-patient variations. Second cancer risks were sensitive to changes in the RBE of neutrons. However, the findings of the study were qualitatively consistent for all patient sizes and risk models considered, and for all neutron RBE values less than 100. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To meet the requirements for rapid tumor growth, a complex array of non-neoplastic vascular, fibroblastic, and immune cells are recruited to the tumor microenvironment. Understanding the origin, composition, and mechanism(s) for recruitment of these stromal components will help identify areas for therapeutic intervention. Previous findings have suggested that ex-vivo expanded bone marrow-derived MSC home to the sites of tumor development, responding to inflammatory signals and can serve as effective drug delivery vehicles. Therefore, we first sought to fully assess conditions under which MSC migrate to and incorporate into inflammatory microenvironments and the consequences of modulated inflammation. MSC delivered to animals bearing inflammatory insults were monitored by bioluminescence imaging and displayed specific tropism and selective incorporation into all tumor and wound sites. These findings were consistent across routes of tumor establishment, MSC administration, and immunocompetence. MSC were then used as drug delivery vehicles, transporting Interferon β to sites of pancreatic tumors. This therapy was effective at inhibiting pancreatic tumor growth under homeostatic conditions, but inhibition was lost when inflammation was decreased with CDDO-Me combination treatment. Next, to examine the endogenous tumor microenvironment, a series of tissue transplant experiments were carried out in which tissues were genetically labeled and engrafted in recipients prior to tumor establishment. Tumors were then analyzed for markers of tumor associated fibroblasts (TAF): α-smooth muscle actin (α-SMA), nerve glia antigen 2 (NG2), fibroblast activation protein (FAP), and fibroblast specific protein (FSP) as well as endothelial marker CD31 and macrophage marker F4/80. We determined the majority of α-SMA+, NG2+ and CD31+ cells were non-bone marrow derived, while most FAP+, FSP+, and F4/80+ cells were recruited from the bone marrow. In accord, transplants of prospectively isolated BM MSC prior to tumor development indicated that these cells were recruited to the tumor microenvironment and co-expressed FAP and FSP. In contrast, fat transplant experiments revealed recruited fat derived cells co-expressed α-SMA, NG2, and CD31. These results indicate TAF are a heterogeneous population composed of subpopulations with distinct tissues of origin. These models have provided a platform upon which further investigation into tumor microenvironment composition and tests for candidate drugs can be performed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive technique for quantitative assessment of the integrity of blood-brain barrier and blood-spinal cord barrier (BSCB) in the presence of central nervous system pathologies. However, the results of DCE-MRI show substantial variability. The high variability can be caused by a number of factors including inaccurate T1 estimation, insufficient temporal resolution and poor contrast-to-noise ratio. My thesis work is to develop improved methods to reduce the variability of DCE-MRI results. To obtain fast and accurate T1 map, the Look-Locker acquisition technique was implemented with a novel and truly centric k-space segmentation scheme. In addition, an original multi-step curve fitting procedure was developed to increase the accuracy of T1 estimation. A view sharing acquisition method was implemented to increase temporal resolution, and a novel normalization method was introduced to reduce image artifacts. Finally, a new clustering algorithm was developed to reduce apparent noise in the DCE-MRI data. The performance of these proposed methods was verified by simulations and phantom studies. As part of this work, the proposed techniques were applied to an in vivo DCE-MRI study of experimental spinal cord injury (SCI). These methods have shown robust results and allow quantitative assessment of regions with very low vascular permeability. In conclusion, applications of the improved DCE-MRI acquisition and analysis methods developed in this thesis work can improve the accuracy of the DCE-MRI results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Validation of treatment plan quality and dose calculation accuracy is essential for new radiotherapy techniques, including volumetric modulated arc therapy (VMAT). VMAT delivers intensity modulated radiotherapy treatments while simultaneously rotating the gantry, adding an additional level of complexity to both the dose calculation and delivery of VMAT treatments compared to static gantry IMRT. The purpose of this project was to compare two VMAT systems, Elekta VMAT and Varian RapidArc, to the current standard of care, IMRT, in terms of both treatment plan quality and dosimetric delivery accuracy using the Radiological Physics Center (RPC) head and neck (H&N) phantom. Clinically relevant treatment plans were created for the phantom using typical prescription and dose constraints for Elekta VMAT (planned with Pinnacle3 Smart Arc) and RapidArc and IMRT (both planned with Eclipse). The treatment plans were evaluated to determine if they were clinically comparable using several dosimetric criteria, including ability to meet dose objectives, hot spots, conformity index, and homogeneity index. The planned treatments were delivered to the phantom and absolute doses and relative dose distributions were measured with thermoluminescent dosimeters (TLDs) and radiochromic film, respectively. The measured and calculated doses of each treatment were compared to determine if they were clinically acceptable based upon RPC criteria of ±7% dose difference and 4 mm distance-to-agreement. Gamma analysis was used to assess dosimetric accuracy, as well. All treatment plans were able to meet the dosimetric objectives set by the RPC and had similar hot spots in the normal tissue. The Elekta VMAT plan was more homogenous but less conformal than the RapidArc and IMRT plans. When comparing the measured and calculated doses, all plans met the RPC ±7%/4 mm criteria. The percent of points passing the gamma analysis for each treatment delivery was acceptable. Treatment plan quality of the Elekta VMAT, RapidArc and IMRT treatments were comparable for consistent dose prescriptions and constraints. Additionally, the dosimetric accuracy of the Elekta VMAT and RapidArc treatments was verified to be within acceptable tolerances.