2 resultados para somatostatin

em Digital Repository at Iowa State University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growth hormone (GH) is a metabolic hormone that plays an important role in long-bone growth and muscle accretion in mammals. The anterior pituitary gland at the base of the brain is the primary site of GH production and release into the general circulation. Neurons in the arcuate nucleus of the hypothalamus in the lower part of the brain secrete GH-releasing hormone ([GHRH] or factor [GRF]) and GH-release-inhibiting hormone ([GHRIH] or somatostatin [SRIH]) that acutely modulate GH secretion by the pituitary gland. The pituitary gland is connected to the median eminence of the hypothalamus by a stalk (hypophyseal stalk). Complete surgical removal of the pituitary gland (hypophysectomy) arrests growth and greatly impairs metabolism in laboratory and farm animal species. Daily subcutaneous injection of bovine GH (bGH) in immature hypophysectomized rats significantly increased body growth and epiphyseal plate width of the long-bone (tibia) compared with diluent-treated hypophysectomized controls. Growth rate was less, however, in the bGH-treated animals compared with intact controls. In beef calves, hypophysectomy completely arrested body weight gain and long-bone growth. GH is secreted in an episodic pattern in young growing intact calves. Episodic GH secretion was abolished immediately following hypophyseal stalk transection, and basal GH blood concentration was less than in shamoperated controls. Regardless, growth continued in these stalk-transected calves during a 1,008-day period, but at a lower growth rate than seen in the sham-operated controls. At autopsy, pituitary gland weight was greatly decreased in hypophyseal stalktransected compared with sham-operated calves. Thus, in spite of obliterated episodic GH release and decreased basal secretion of GH, the isolated pituitary gland of hypophyseal stalk transected calves continues to secrete sufficient amounts of GH for significant growth and development throughout a long period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The requirement for growth hormone (GH) secretion by the anterior pituitary gland in beef calves is demonstrated by a complete lack of long bone-growth and muscle accretion after hypophysectomy (surgical removal of the pituitary gland). When the connecting link (hypophyseal stalk) to the basal region (hypothalamus) of the brain is surgically severed, long bone growth and body weight gain are greatly limited compared with sham-operated controls. This limited growth results from obliteration of episodic GH secretion and reduced basal blood concentration of the hormone compared with sham-operated controls. Thus, the hypophyseal stalk-transected (HST) calf provides an appropriate model to determine mechanisms by which hypothalamic neuropeptides from the brain regulate GH secretion, and thereby growth in the young calf. Neuropeptides have been isolated and characterized in bovine hypothalamus that stimulate GH secretion (GH-releasing hormone [GHRH]) or factor [GHRF] and inhibit GH secretion (GH release-inhibiting hormone [GHRIH] or somatostatin [SRIH]). A dose of .067 micrograms of GHRF per kilogram of body weight injected intravenously in HST calves abruptly increased plasma GH concentration to 55 nanograms per milliliter from the control period mean of 5 nanograms per milliliter. HST calves then were infused intravenously with .033 and .067 microgram somatostatin per kilogram of body weight, during which a pulse injection of .067 microgram of GHRF was administered. GH increase was limited to 9 and 5 micrograms per kilogram body weight during the .033- and .067 microgram SRIH infusions after GHRF; no GH rebound was observed after the SRIH was discontinued. GHRF from humans contains 40 to 44 amino acids. Rat hypothalamic GHRF analogs containing 29 to 32 amino acids elicited dose-dependent GH peak release in these HST calves. In 1977, Bowers and Monomy isolated novel GH releasing peptides consisting of only six amino acids; they caused GH release by isolated pituitary cells in culture and acute GH release when administered intravenously. We recently have utilized a novel nonpeptidyl GH secretagogue of low molecular weight in the pig to determine its mechanisms of action within the central nervous system.