35 resultados para finishing
em Digital Repository at Iowa State University
Resumo:
A feeding trial was conducted with 790-lb yearling heifers fed an average of 121 days to evaluate replacing cracked corn and supplemental urea with wet distillers grains or condensed distillers solubles. Wet distillers grains were evaluated at 16%, 28% and 40% of diet dry matter. Condensed distillers solubles were added at 6.5% of diet dry matter. Control diets were supplemented with urea or a combination of urea and soybean meal. Feeding 16% wet distillers grains or condensed distillers solubles increased gain of heifers compared with those fed the control urea diet. Increasing the amount of wet distillers grains tended to decrease feed intake and reduce gain. The calculated apparent net energy based on gain of the heifers was greatest for the heifers fed 16% wet distillers grains. The apparent energy of the wet distillers grains declined as the quantity fed was increased. The calculated net energy values were 1.09 and 1.35 Mcal/lb of dry matter for the average of the three concentrations of wet distillers grains and condensed distillers solubles. These results confirm the high energy values of wet distillers grains relative to cracked corn as observed in a previous steer feeding trial.
Resumo:
A feeding trial was conducted with 940-lb yearling steers fed 113 days to determine the feeding value of distillers grains relative to corn grain. Replacing corn and urea with wet distillers grains for 20% of the diet dry matter tended to increase gain with no increase in feed consumption, resulting in improved feed conversion. Replacing 40% of diet dry matter with wet distillers grains decreased feed intake without affecting gains, and improved feed efficiency. The overall average estimated net energy value of wet distillers grains was 1.20 Mcal NEg per pound dry matter. This experiment confirmed the observations in previous cattle feeding experiments, that for finishing cattle wet distillers grains have a high energy value compared with cracked corn grain. Another objective of the study was to determine if cattle being fed wet distillers grains could be suddenly changed to a different diet if the supply of wet feed was suddenly disrupted. It was found that if intake is managed during the change, that distillers grains portion of the diet can be suddenly changed from wet to dry and then changed back to wet after a week, without sacrificing performance of the cattle.
Resumo:
A feeding trial was conducted with 860-lb yearling steers fed 121 days to evaluate Condensed Porcine Solubles (Porcine Solubles) as a source of supplemental nitrogen for finishing cattle. Diets containing 5% soybean meal, 1.46% urea, and 2% or 4% Porcine Solubles were compared. When first offered, cattle did not want to consume feed containing the Porcine Solubles. Following adaptation, feed containing up to 4% Porcine Solubles was readily consumed. During the first 56 days, steers fed soybean meal gained faster and were more efficient than steers fed urea or Porcine Solubles. At the end of the trial there were no differences among the nitrogen supplements in feed intake, gain, or feed conversion. There were no significant differences in carcass weight or measures of carcass quality.
Resumo:
Steers were sorted into four groups based on hip height and fat cover at the start of the finishing period. Each group of sorted steers was fed a diet containing 0.59 or 0.64 Mcal NEg per pound of diet. Steers with less initial fat cover (.08 in.) gained slightly faster, consumed less feed, and therefore tended to be more efficient than steers with greater finish (.16 in.). Steers fed the lower-energy diet consumed more feed, gained similarly, and were less efficient than steers fed the higher-energy diet. The NRC computer model to evaluate beef cattle diets underpredicted performance of cattle in this experiment, but accurately predicted the differences in gain and feed efficiency observed between the leaner and fatter steers and between the two diets. In this study, the shorter steers (49.4 vs 52.2 in. initial height at the hip) gained faster with slightly greater feed intake and the same feed conversion.
Resumo:
Steers fed Optimum® high oil corn had statistically similar live performance as steers fed isogenetic control corn or the control corn + fat. Numerically steers fed high oil corn gained 3% faster during the 107-day study with similar feed conversion. During the first half of the experiment, steers fed high oil corn did not perform as well as those fed control corn. During the second half of the experiment, steers fed high oil corn gained 21% faster and were 17% more efficient. There were no effects of feeding high oil corn on carcass characteristics, except there were more Choice carcasses from the steers fed high oil corn as compared with control corn (57% vs. 43% Choice).
Resumo:
Finishing yearling steers fed a corn-based diet containing steep liquor had statistically similar live performance as steers fed the control diet. Numerically steers fed the steep containing diet were 6% more efficient. Steers fed steep liquor tended to contain less carcass fat (as measured by intramuscular marbling) less kidney, heart and pelvic fat, and less backfat thickness. When priced at $50/ton adding steep liquor at 10% of diet dry matter reduced feed cost for gain 9%.
Resumo:
Rolled high-oil corn in comparison with rolled isogenetic control corn was fed to finishing steers as 33%, 66% and 100% of the corn grain in their diet in a 134-day feeding trial. During the first 75 days of the trial, steers fed highoil corn had numerically lower rates of gain and tended to have poorer feed conversions compared with the control corn. At the end of the trial, there were not statistically significant differences in performance or carcass measurements of the steers fed the different amounts of high-oil or control corns. The results of this study indicated that the steers did not respond to the higher energy content of high-oil corn.
Resumo:
Three specialty corns, high oil, high protein and high oil with high protein, were compared with control corn in a 113-day steer feeding trial. During the first 63 days of the study, steers fed the corns containing more oil had slower gain and poorer feed conversion compared with the control corn. At the end of the trial there were no statistically significant differences in performance of steers fed the different corns. Steers fed the high protein corn tended to have higher grading carcasses compared with those fed the control corn. Otherwise there were no differences in carcass measurements due to source of corn fed the steers. Feed cost of gain was reduced with the high-protein corn and the corn with high fat and high protein compared with the control corn because of similar feed conversions and the reduced amount of soybean meal needed to supplement the specialty corns.
Resumo:
Two 3 x 3 latin squares were utilized in an 84-day digestion trial with ruminally- and duodenallycannulated steers. Diets consisted of 73 to 78% whole corn grain, 12.3% corn silage and 2.0% N, with treatment differences being high-oil corn- (HOC), isogenetic typical-corn- (TC), or isogenetic typical-corn + fat- (TC+F) based diets. The HOC and TC+F diets were formulated to provide the same ether extract (EE) content. All diets were fed at 90% of ad libitum intake. Chromic oxide was used as a digestibility marker. Total tract dry matter (DM) (P=.08), organic matter (OM) (P=.08) and nitrogen (N) (P=.06) digestibilities tended to be greater for TC than HOC diets, whereas starch neutral detergent fiber (NDF), acid detergent fiber (ADF), and ether extract digestibilities were similar (P>.10). There were no differences (P>.10) in total tract dry matter, organic matter, starch, NDF, ADF, ether extract, or nitrogen digestibilities between TC+F and HOC diets or TC and TC+F diets. Ruminal digestion of dry matter, organic matter, starch, NDF, ADF, and feed nitrogen was similar (P>.10) among treatments. Microbial-nitrogen flow and efficiencies were also similar (P>.10) among treatments. Results indicate finishing steer diets composed of primarily HOC are equally or less digestible than similar diets composed of TC, and adding fat to TC diets did not affect the digestibility of the diet when fed to finishing steers.
Resumo:
Yearling steers were fed corn-based diets supplemented with urea or soybean meal plus urea, and none, 2%, or 4% fat. All steers were implanted with Revalorâ-S and fed for 118 days. Adding fat did not improve performance of the steers in the feedlot or improve carcass characteristics. Feeding soybean meal increased rate of gain, improved feed efficiency, increased carcass weight, and tended to improve carcass quality grades compared with feeding urea. Adding 4% fat decreased feed intake, suggesting that corn-based diets may contain enough oil to approach the quantity of fat that can be utilized effectively in a ruminant diet.
Resumo:
A feeding trial was conducted with 870-lb steers fed 137 days to evaluate replacing cracked corn with dry and wet distillers grains with solubles (DGS) as feed for finishing cattle. Dry DGS was evaluated at 16% of diet dry matter. Wet DGS (WDGS) was evaluated at 14.6%, 26.2%, and 37.5% of diet dry matter. Control diets were supplemented with urea or a combination of urea and soybean meal. Feeding 16% dry DGS or 14.6% wet DGS increased rate of gain and tended to increase carcass fatness. Increasing the amount of wet DGS in the diet decreased feed intake, reduced gain, and improved feed conversion. The calculated net energy for gain values for dry and wet DGS were .92 and 1.5 times the energy value of corn grain. Economic returns declined slightly as the percentage of wet DGS increased in the diet, but remained above the two diets without DGS. The average benefits from feeding wet DGS averaged $25, $21, and $19 per head for steers fed 14.6%, 26.2%, and 35.7%, respectively, based on a formula price for wet DGS related to price of corn and including a charge for transportation of the wet feed.
Resumo:
A 192-day experiment involving 144 young Angus steers fed growing and finishing diets containing 20% corn gluten feed was conducted to evaluate feeding a soluble source of readily available cobalt. No benefits were observed in rate of gain, feed intake or carcass value by feeding the available source of cobalt.
Resumo:
The effect on meat quality of integrating pasturing systems into cattle finishing programs was observed over a two-year period. Year one consisted of 84 fall born calves and 28 spring born calves and year two consisted of 116 fall born calves. The effect of using Rumensinâ for cattle on bromegrass pasture was incorporated into year one. In year two cattle on pasture received bromegrass pasture, and one treatment group received switchgrass during the warm season. In both years there was a control group of calves that went directly to the feedlot with the remaining calves going to pasture for varying periods of time before being finished in drylot. At the conclusion of the feeding trial, cattle were processed into beef, and a ribeye steak was removed from each carcass for sensory evaluation. In year one cattle that were on pasture the longest had the lowest (P<0.05) average quality grades. In year two this trend was reversed, and cattle placed directly into drylot had the lowest (P<0.05) average quality grades. In both years cattle carcasses in all treatments averaged yield grade 2. Warner Bratzler shear force values were not affected by treatments. Sensory panel evaluations indicated tenderness was unaffected by treatments, and in year two flavor and flavor intensity were unaffected by treatments. In year one flavor intensity was lowest (P<0.05) for steaks derived from cattle that were on pasture the longest and received Rumensinâ. Inclusion of Rumensinâ for cattle on pasture did not influence yield and quality grades or affect tenderness, juiciness, and flavor. Results of this study indicate that steer calves placed on cool and warm season pastures prior to being finished in drylot, can produce carcasses with acceptable yield and quality grades and that the meat eating qualities will be largely unaffected by the inclusion of pasture.
Resumo:
This experiment was conducted to evaluate the efficacy of daily feeding a live microbial preparation containing two live organisms to finishing cattle. One organism was a lactobacillus, and the other was a propionibacterium, thought to work in concert to improve fermentation in the rumen and overall digestion. The study was conducted with Angus steers with an average initial weight of 550 lbs that were fed a finishing ration containing 50% wet corn gluten feed on a dry basis for 184 days. Feeding the microbial product improved daily gain and feed efficiency 1.7% and 2.4%, respectively, but the differences were not statistically significant. The microbial preparation increased carcass weights 1% but had no effects on quality or yield grades. It is concluded that potential benefits of this product are more likely to be greater when cattle are fed high grain rations rather than diets containing high concentrations of corn gluten feed.
Resumo:
Six-hundred pound Angus steer calves were fed cornbased finishing diets for 180 days to determine the effects of stepwise reduction of protein in the diet on performance and carcass characteristics. Reducing protein in the diet, but satisfying the requirements projected by the National Research Council model for Nutrient Requirements of Beef Cattle, did not affect performance or carcass measurements. Further reduction in protein content of the diet, so the projected requirement of the rumen microorganisms was not being met, did not affect performance or carcass measurements. It is concluded that quantity of protein fed to finishing cattle can be programmed and abstantially reduced. These reductions will result in substantially less nitrogen excreted in manure from larger feedlots.