2 resultados para Time Integration
em Digital Repository at Iowa State University
Resumo:
A 3-year study, using 84 fall-born and 28 spring-born calves of similar genotypes, was conducted to integrate pasturing systems with drylot feeding systems. Calves were started on test following weaning in May and October. Seven treatments were imposed: 1) fall-born calves directly into feedlot; 2 and 3) fall-born calves put on pasture with or without ionophore and moved to the feedlot at the end of July; 4 and 5) fall-born calves put on pasture with or without ionophore and moved to the feedlot at the end of October; 6 and 7) spring-born calves put on pasture with or without ionophore and moved to the feedlot at the end of October. A bromegrass pasture consisting of 16 paddocks, each 1.7 acre in size, was available. Each treatment group had access to 1 paddock at a time and was rotated at approximately 3-day intervals. In the feedlot, steers were provided an 82% concentrate diet containing whole-shelled corn, ground alfalfa hay, and a protein, vitamin and mineral supplement containing ionophore and molasses. As pens of cattle reached about 1150 lb. average live weight, they were processed and carcass traits were evaluated. Pasture daily gains were highest for cattle on pasture for the longest duration (P < .03), and overall daily gains were highest for drylot cattle (P < .01) and decreased with increased time spent on pasture. Although differences among treatments existed in numerical scores for yield and quality grades (P < .05 and P < .03, respectively), all treatments provided average yield grade scores of 2 and quality grades of low Choice or higher. Use of four production costs and pricing scenarios revealed that fall-born calves placed on pasture for varying lengths of time were the most profitable (P < .04) among the treatments. Furthermore, employing a 5% price sensitivity analysis, indicated that fed-cattle selling price had great impact on profit potential and was followed in importance by feeder purchase price and corn grain price. Overall, these findings should provide significant production alternatives for some segments of the cattle feeding industry and also lend substantial credence to the concept of sustainable agriculture.
Resumo:
In this study, 84 fall-born and 28 spring-born calves of similar genetic background were used to evaluate the incorporation of rotational pasturing systems into cattle finishing programs. Because the second-year trial is not complete, this report will include only the first year of the five-year study. Seven treatments were imposed: 1) fall-born calves put directly into the feedlot on May 7, 1996; 2) fall-born calves put on pasture and receiving an ionophore and moved to the feedlot on July 30, 3) fall born calves put on pasture on May 7 and not receiving an ionophore and moved to the feedlot on July 30; 4) fall-born calves put on pasture on May 7 and receiving an ionophore and moved to the feedlot on October 22; 5) fall-born calves put on pasture on May 7 and not receiving an ionophore and moved to the feedlot on October 22; 6) spring-born calves put on pasture on October 1 and receiving an ionophore and moved to the feedlot on October 22; and 7) spring-born calves put on pasture on October 1 and not receiving an ionophore and moved to feedlot on October 22. Performance data showed that cattle on pasture receiving an ionophore had higher gains than those not receiving an ionophore on pasture. This trend was reversed in the feedlot period. Yield grades were not greatly influenced by treatment, although quality grades tended to be higher for older cattle and those cattle that were in drylot for a longer period of time.