7 resultados para Temporary calf removal
em Digital Repository at Iowa State University
Resumo:
A comparison was made between two different summer grazing systems. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass--orchardgrass--birdsfoot trefoil pastures and winter stockpiles pastures with cowcalf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass--orchardgrass-- birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures and one fourth of the allocated summer pastures. Cow-calf pairs grazing in the year-round system utilized on fourth of the winter stockpile pastures due to lack of forage, whereas cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer. Grazing system did not affect cow body weight, condition score, or daily calf weight gain. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level.
Resumo:
A comparison was made between two different summer grazing systems at the McNay Research Farm. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil pastures and winter stockpile pastures with cow-calf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures in 1996 (Yr. 1) and all the pasture in 1997 (Yr. 2). One hay removal occurred on one fourth of the allocated summer pastures in Year 1 and one half of the pastures in Year 2. In Year one, cow-calf pairs grazing in the year-round system utilized one fourth of the winter stockpile pastures due to a lack of forage on the summer pastures, whereas in Year 2 cowcalf pairs grazed winter stockpile pastures to remove forage as a second cutting of hay. Cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer of Year 1 due to lack of grazable forage; in Year 2, no supplementation was needed. Grazing system did not affect cow body weight, condition score, or daily calf gain in either year. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level in Year 1 and Year 2. The year-round system also produced more net winter forage than did the minimal land system in Year 1. Differences in forage yield and quality were only observed between winter stockpile forages of tall fescue-red clover and smooth bromegrass-red clover and summer pastures during the months of June, July, and August.
Resumo:
Pastures containing alfalfa-grass or smooth bromegrass were stocked with .6, .8, or 1.0 cow-calf units per acre to compare cow and calf production in rotational grazing systems managed for optimum forage quality. To remove excess forage early in the grazing season, yearling heifers or steers grazed with the cows in each pasture at a stocking rate of .6 ccu per acre for the first 28, 37, and 40 days of grazing in years one, two, and three. Live forage density and days of grazing per paddock were estimated by sward height. Cows, calves, and yearlings were weighed and cows condition scored every 28 days. All cows grazed for 140 days unless forage became limiting. The cows on the smooth bromegrass pasture stocked at 1.0 cow-calf units per acre were removed after 119 days in 1994, 129 days in 1995, and 125 days in 1996. Cows on one of the alfalfagrass pastures stocked at 1.0 ccu per acre were removed after 136 days of grazing in 1996 because of lack of forage. Alfalfa-grass pastures tended to have a more consistent supply of forage over the grazing season than the bromegrass pastures. Cows grazing the alfalfa-grass pastures had greater seasonal weight gains and body condition score increases and lower yearling weight gains than the smooth bromegrass pastures. Daily and total calf weight gains and total animal production also tended to be greater in alfalfa-cool season grass pastures. Increasing stocking rates resulted in significantly lower cow body condition increases and yearling weight gains, and also increased the amounts of calf and total growing animal produced.
Resumo:
One hundred eighty-nine mixed breed beef heifers from 13 consignors enrolled in the MACEP heifer development project were utilized in this study. Heifers were synchronized by feeding 0.5 mg melengestrol acetate (MGA) per head per day for 14 days followed by an injection of prostaglandin F2a (PGF2a; 25 mg Lutalyse®) 17 days after the last MGA feeding. Each heifer was fitted with a Heatwatch® transmitter on the morning of PGF2a administration to facilitate detection of estrus. Vaginal conductivity measurements were taken using an Ovatec® probe every 12 hours for 96 hours beginning at the time of PGF2a injection. Heifers randomly assigned to produce a female calf were inseminated near the onset of estrus (as indicated by probe values of £ 55 on the decline). Heifers randomly assigned to produce a male calf were inseminated approximately 24 hours after the onset of estrus (as indicated by probe values of ³ 60 on the incline). All heifers not inseminated by 96 hours after PGF2a were mass inseminated in an attempt to impregnate as many heifers as possible. Heifers that were diagnosed as pregnant as a result of the artificial insemination were subjected to ultrasonography for fetal sex determination. Only 70 of the 189 heifers (37.0%) exhibited estrus according to Heatwatch® and incidence of estrus was influenced by heifer average daily gain, reproductive tract score, and disposition score. Heifers receiving a disposition score of 3 (78.7) had a higher (P<.05) probe reading at AI than those receiving a disposition score of 1 or 2 (70.8 and 72.5, respectively). Heifers with probe readings at insemination of 80 - 84 and > 84 had lower (P<.05) pregnancy rates to AI (13.6 and 0.0%, respectively) than heifers with probe readings in the ranges of < 60, 60 - 64, 65 - 69, 70 - 74, and 75 - 79 (35.7, 40.9, 31.4, 35.3, and 26.9% respectively). Heifers that were bred when probe values were increasing had a lower (P<.05) percentage of male fetuses (34.4%) than those bred during a period of decreasing probe values (69.2% male fetuses). These results demonstrate that a vaginal conductivity probe may be a useful tool to determine an insemination time that could potentially alter calf sex ratio.
Resumo:
Pastures containing alfalfa-smooth bromegrass or smooth bromegrass were stocked with .6, .8, or 1.0 cow-calf units per acre to compare cow and calf production in rotational grazing systems managed for optimum forage quality. To remove excess forage early in the grazing season, yearling heifers grazed with the cows in each pasture at a stocking rate of .6 heifers per acre for the first 28 days of grazing. Live forage density and days of grazing per paddock were estimated by sward height. Cows, calves, and heifers were weighed and cows condition scored every 28 days. All cows grazed for 140 days except those grazing the smooth bromegrass pasture stocked at 1.0 cow-calf units per acre; these were removed after 119 days in 1994 and 129 days in 1995 because of lack of forage. Alfalfa-grass pastures tended to have a more consistent supply of forage over the grazing season than the bromegrass pastures. Cows grazing the alfalfa-cool season grass pastures had greater seasonal weight gains and body condition score increases and lower heifer weight gains than the smooth bromegrass pastures. Daily and total calf weight gains and total animal production also tended to be greater in alfalfa-cool season grass pastures. Increasing stocking rates resulted in significantly lower condition increases and heifer weight gains, while increasing the amounts of calf and total growing animal produced.
Resumo:
The requirement for growth hormone (GH) secretion by the anterior pituitary gland in beef calves is demonstrated by a complete lack of long bone-growth and muscle accretion after hypophysectomy (surgical removal of the pituitary gland). When the connecting link (hypophyseal stalk) to the basal region (hypothalamus) of the brain is surgically severed, long bone growth and body weight gain are greatly limited compared with sham-operated controls. This limited growth results from obliteration of episodic GH secretion and reduced basal blood concentration of the hormone compared with sham-operated controls. Thus, the hypophyseal stalk-transected (HST) calf provides an appropriate model to determine mechanisms by which hypothalamic neuropeptides from the brain regulate GH secretion, and thereby growth in the young calf. Neuropeptides have been isolated and characterized in bovine hypothalamus that stimulate GH secretion (GH-releasing hormone [GHRH]) or factor [GHRF] and inhibit GH secretion (GH release-inhibiting hormone [GHRIH] or somatostatin [SRIH]). A dose of .067 micrograms of GHRF per kilogram of body weight injected intravenously in HST calves abruptly increased plasma GH concentration to 55 nanograms per milliliter from the control period mean of 5 nanograms per milliliter. HST calves then were infused intravenously with .033 and .067 microgram somatostatin per kilogram of body weight, during which a pulse injection of .067 microgram of GHRF was administered. GH increase was limited to 9 and 5 micrograms per kilogram body weight during the .033- and .067 microgram SRIH infusions after GHRF; no GH rebound was observed after the SRIH was discontinued. GHRF from humans contains 40 to 44 amino acids. Rat hypothalamic GHRF analogs containing 29 to 32 amino acids elicited dose-dependent GH peak release in these HST calves. In 1977, Bowers and Monomy isolated novel GH releasing peptides consisting of only six amino acids; they caused GH release by isolated pituitary cells in culture and acute GH release when administered intravenously. We recently have utilized a novel nonpeptidyl GH secretagogue of low molecular weight in the pig to determine its mechanisms of action within the central nervous system.
Resumo:
Financial, economic, and biological data collected from cow-calf producers who participated in the Illinois and Iowa Standardized Performance Analysis (SPA) programs were used in this study. Data used were collected for the 1996 through 1999 calendar years, with each herd within year representing one observation. This resulted in a final database of 225 observations (117 from Iowa and 108 from Illinois) from commercial herds with a range in size from 20 to 373 cows. Two analyses were conducted, one utilizing financial cost of production data, the other economic cost of production data. Each observation was analyzed as the difference from the mean for that given year. The independent variable utilized in both the financial and economic models as an indicator of profit was return to unpaid labor and management per cow (RLM). Used as dependent variables were the five factors that make up total annual cow cost: feed cost, operating cost, depreciation cost, capital charge, and hired labor, all on an annual cost per cow basis. In the economic analysis, family labor was also included. Production factors evaluated as dependent variables in both models were calf weight, calf price, cull weight, cull price, weaning percentage, and calving distribution. Herd size and investment were also analyzed. All financial factors analyzed were significantly correlated to RLM (P < .10) except cull weight, and cull price. All economic factors analyzed were significantly correlated to RLM (P < .10) except calf weight, cull weight and cull price. Results of the financial prediction equation indicate that there are eight measurements capable of explaining over 82 percent of the farm-to-farm variation in RLM. Feed cost is the overriding factor driving RLM in both the financial and economic stepwise regression analyses. In both analyses over 50 percent of the herd-to-herd variation in RLM could be explained by feed cost. Financial feed cost is correlated (P < .001) to operating cost, depreciation cost, and investment. Economic feed cost is correlated (P < .001) with investment and operating cost, as well as capital charge. Operating cost, depreciation, and capital charge were all negatively correlated (P < .10) to herd size, and positively correlated (P < .01) to feed cost in both analyses. Operating costs were positively correlated with capital charge and investment (P < .01) in both analyses. In the financial regression model, depreciation cost was the second critical factor explaining almost 9 percent of the herd-to-herd variation in RLM followed by operating cost (5 percent). Calf weight had a greater impact than calf price on RLM in both the financial and economic regression models. Calf weight was the fourth indicator of RLM in the financial model and was similar in magnitude to operating cost. Investment was not a significant variable in either regression model; however, it was highly correlated to a number of the significant cost variables including feed cost, depreciation cost, and operating cost (P < .001, financial; P < .10, economic). Cost factors were far more influential in driving RLM than production, reproduction, or producer controlled marketing factors. Of these cost factors, feed cost had by far the largest impact. As producers focus attention on factors that affect the profitability of the operation, feed cost is the most critical control point because it was responsible for over 50 percent of the herd-to-herd variation in profit.