2 resultados para Sugar And Acid-rich Foods
em Digital Repository at Iowa State University
Resumo:
One non bt-corn hybrid (Pioneer 3489) and three btcorn hyrids (Pioneer 34RO7, Novartis NX6236, and Novartis N64-Z4) were planted in replicated 7.1-acre fields. After grain harvest, fields were stocked with 3 mature cows in midgestation to be strip-grazed as four paddocks over 126 days. Six similar cows were allotted to replicated drylots. All cows were fed hay as necessary to maintain a condition score of 5 on a 9-point scale. Cows were condition-scored biweekly and weighed monthly. Forage yield and weathering losses were determined by sampling one 4-m2 location per grazed or ungrazed paddock in each field with a minimum total of 2 locations of grazed or ungrazed forage per field. To measure forage selection during grazing, samples of grazed forage were collected from the rumen of one fistulated steer that grazed for 2 hours after ruminal evacuation. Non-bt-corn hybrids had greater (P<.05) infestation of corn borers in the upper stalk, lower stalk and ear shank than bt-corn hybrids. However, there were no differences in grain yields or dropped grain between hybrids. Crop residue dry matter, organic matter and in vitro digestible dry matter yields at the initiation of grazing did not differ between corn hybrids. Dry matter, organic matter and in vitro digestible dry matter losses tended (P<.10) to be greater from the NX6236 and N64-Z4 hybrids than from the 3489 and 34RO7 hybrids and were greater (P<.05) from grazed than non-grazed areas of the fields. At the initiation of grazing, dry matter concentrations of the crop residues from the NX6236 and N64-Z4 hybrids tended to be lower than those from the 3489 and 34RO7 hybrids. Crop residues from the NX6236 and N64-74 hybrids had lower concentrations of acid detergent fiber (P<.05) and acid detergent lignin (P=.07) and higher concentrations of in vitro digestible organic matter than the 3489 and 34RO7 hybrids. Over the grazing season, corn hybrid did not affect mean rates of change in forage composition. The concentration of in vitro digestible organic matter in forage selected by steers after two weeks of grazing did not differ. However, steers grazing corn crop residues consumed forage with higher (P<.05) concentrations of neutral detergent fiber, acid detergent fiber, and acid detergent insoluble nitrogen than steers fed hay. The acid detergent fiber concentration of forage selected by steers grazing the 3489 and N64-Z4 hybrids was lower (P < .05) than concentrations from the 34RO7 and NX6236 hybrids. In order to maintain similar body condition score changes, cows grazing crop residues from the 3489, 34RO7, NX6236, and N64-Z4 hybrids required 650, 628, 625, and 541 kg hay DM/cow compared with a hay requirement of 1447 kg hay DM/cow for cows maintained in a drylot.
Resumo:
An in situ study was conducted to evaluate the effects of heat treatments on the degradation kinetics and escape protein concentrations of forages (alfalfa and berseem clover). Alfalfa collected at 4 and 7 weeks post-harvest and berseem clover collected at 5 and 7 weeks postharvest were freeze-dried and then heated to 100, 125, and 150o C for 2 hours. Heat treatment effects were determined by placing two bags of sample (for each treatment, maturity, and forage species for a given incubation times) into the rumen of one fistulated steer fed alfalfa hay. Bags were incubated for periods of 0 to 48 hours. Increasing levels of heat treatments of forages increased concentrations of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent insoluble nitrogen (ADIN) and non-degradable protein (NDP), potentially degradable protein proportion (PDP), and protein escaping rumen degradation (PEP) while decreasing water soluble protein (WSP) and the rates of crude protein (CP), except immature berseem clover and cell wall (CW) degradation. PEP was greater and rate of CP degradation was lower at 100 and 150o C compared to 125o C in immature berseem clover.