3 resultados para Ruminal digestibility
em Digital Repository at Iowa State University
Resumo:
Two 3 x 3 latin squares were utilized in an 84-day digestion trial with ruminally- and duodenallycannulated steers. Diets consisted of 73 to 78% whole corn grain, 12.3% corn silage and 2.0% N, with treatment differences being high-oil corn- (HOC), isogenetic typical-corn- (TC), or isogenetic typical-corn + fat- (TC+F) based diets. The HOC and TC+F diets were formulated to provide the same ether extract (EE) content. All diets were fed at 90% of ad libitum intake. Chromic oxide was used as a digestibility marker. Total tract dry matter (DM) (P=.08), organic matter (OM) (P=.08) and nitrogen (N) (P=.06) digestibilities tended to be greater for TC than HOC diets, whereas starch neutral detergent fiber (NDF), acid detergent fiber (ADF), and ether extract digestibilities were similar (P>.10). There were no differences (P>.10) in total tract dry matter, organic matter, starch, NDF, ADF, ether extract, or nitrogen digestibilities between TC+F and HOC diets or TC and TC+F diets. Ruminal digestion of dry matter, organic matter, starch, NDF, ADF, and feed nitrogen was similar (P>.10) among treatments. Microbial-nitrogen flow and efficiencies were also similar (P>.10) among treatments. Results indicate finishing steer diets composed of primarily HOC are equally or less digestible than similar diets composed of TC, and adding fat to TC diets did not affect the digestibility of the diet when fed to finishing steers.
Resumo:
A digestibility trial, utilizing eight crossbred steers weighing initially 741 lbs. was conducted in an 8 x 8 Latin square design. High-fiber corn by-products were compared with corn as energy sources when fed in mixed diets with either lowor high-quality forage. Ground, dry corn stover and ground alfalfa hay were both fed alone or with corn grain, dried corn gluten feed (CGF), and dried corn distillers grains plus solubles (DDG) in a 1:1 ratio (dry basis). Total tract dry matter digestibility (DMD) was increased for both forages when fed with concentrates. Total tract DMD was similar in stover-based and alfalfa-based diets fed with CGF and DDG. However, stover+corn was lower in DMD than either stover+CGF and stover+DDG. Conversely, alfalfa+corn was higher in DMD than alfalfa+CGF or alfalfa+DDG. Feeding stover with corn tended to decrease digestibility of neutral detergent fiber (NDF), while feeding stover with CGF or DDG increased NDFD. There was no effect upon NDF digestion of alfalfa-based diets when fed with any of the concentrates. Feeding either forage with a concentrate increased digestible energy (DE). Stover+CGF and stover+DDG were similar in DE and were both higher in DE than stover+corn. Alfalfa+DDG tended to be higher than alfalfa+CGF and was similar to alfalfa+corn in DE. Alfalfa+CGF was lower in DE compared with alfalfa+corn. Results are interpreted to indicate that stover is more susceptible to negative feed interactions caused by corn grain than is alfalfa. Additionally, highfiber corn co-products fed with stover resulted in a positive associative effect but essentially had no associative effect when fed with alfalfa.
Resumo:
Six wethers, fitted with ruminal and duodenal cannulae, were utilized in a 6 x 6 Latin Square metabolism trial to determine efficiency of microbial protein synthesis in the rumen of sheep fed forages with varying nutritional quality. Ground alfalfa hay, oat-berseem clover hay, and baled corn crop residues were fed at an ad libitum or limited intake level. Chromium-mordanted fiber, cobalt- EDTA, and purines were used to determine digesta flow and solid passage rate, dilution rate, and microbial protein production, respectively. Sheep fed alfalfa hay had greater organic matter (OM) intakes, and amounts of OM apparently and truly ruminally digested (g/d; P < .05) than sheep fed either oat-berseem clover or corn crop residues at the ad libitum intake level. Rates of slow solid and liquid passage, and postfeeding ruminal ammonia-nitrogen (N) and volatile fatty acids (VFA) concentrations were lower (P < .05) in sheep fed corn crop residues than those fed alfalfa or oat-berseem clover hay. Total duodenal flows (g/d) and efficiencies of ruminal synthesis (g crude protein/100 g of OM truly digested; P < .05) of microbial protein were less in sheep fed corn crop residues than in sheep fed alfalfa, and oatberseem clover ad libitum. Whereas total duodenal microbial-N flow was related to organic matter intake (OMI; r2 = .97) and OM truly digested in the rumen (OMTDR; r2 = .97), microbial efficiency was related to g of nitroge truly digested in the rumen (NTDR)/100 g of OMTDR (r2 = .82) and slow solid passage rate (r2 = .91).