9 resultados para Rumble strip

em Digital Repository at Iowa State University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Farmers in central and north central Iowa are often criticized for low adoption of no-tillage. No-tillage is often faulted with cooler, wetter soils and subsequently reduced yields. An alternative to conventional tillage and no-tillage systems is strip tillage where the benefits of both may be combined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strip trial was designed to evaluate new drought tolerant corn hybrids for yield. Three of these drought tolerant hybrids were planted with other hybrids for comparison.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fifty-five yearling crossbred steers and 3C cow-calf pairs were used in a forage-based beef production system demonstration project at the Armstrong Outlying Research Farm. From May 11 to June 13, steers rotationally grazed a 41-acre grass pasture that was divided into eight paddocks. From June 13 to August 24, steers were placed in a drylot and fed berseem clover/oat soilage from a strip-intercropping system. Beginning June 5, 36 cow-calf pairs were allowed to rotationally graze the 41-acre pasture until September 18. Calf weight gains for the 110 days were 1.57 pounds per day, and total production from the pasture was 151 pounds per acre. No cow weight change or condition score change was measured. Total steer production was 29 and 580 pounds per acre or average daily gains were .67 and 2.23 pounds while grazing pasture and being fed in a drylot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pastures containing hay-type and grazing tolerant alfalfa hybrids were grazed in a season-long or complimentary rotational stocking system with Nfertilized smooth bromegrass. The pastures were stocked at a seasonal density of .8 cow-calf pairs per acre for 120 days. Pastures were intensively managed by daily strip-stocking with the assumptions that 50% of live forage was available and daily live dry matter consumption of each cow-calf pair was 3.5% of the cow’s body weight. First-cutting forage was harvested as hay from 40% of pasture acres to remove excess forage growth early in the grazing season. Forage was grazed from the remaining 60% of each pasture for the first 44 days of the experiment and then from the entire pasture thereafter. Live forage yields, estimated by monthly clippings, were greater in May and September on the season-long alfalfa pastures compared with the complementary pastures and on the alfalfa pastures compared with the N-fertilized smooth bromegrass pastures. The proportions of legumes in the live dry matter in pastures with grazing tolerant and hay-type alfalfas in the season-long grazing systems declined by 70% and 50%, respectively, in the 120 day trial. The proportions of legumes in the live dry matter in pastures with grazing tolerant and the hay-type alfalfas in the complementary grazing system declined 60% and 42%, respectively, in the 120 day trial. Cows grazing either alfalfa hybrid by either management system had greater weight gains during the breeding and grazing seasons and greater increases in body condition score prebreeding and during the breeding season than the cows that grazed N-fertilized smooth bromegrass for the entire season. Also, cows grazing either alfalfa in the season-long system had greater breeding season increases in body condition score than cows grazing alfalfa in the complementary system with N-fertilized smooth bromegrass. Daily gains and seasonal gains of calves from cows grazing the alfalfa pastures tended to be greater than those grazing N-fertilized smooth bromegrass. Within alfalfa treatments, calves of cows grazing alfalfa pastures in the season-long system tended to produce more pounds per acre than those of cows grazing alfalfa in the complementary systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animal production, hay production and feeding, and the yields and composition of forage from summer and winter grass-legume pastures and winter corn crop residue fields from a year-round grazing system were compared with those of a conventional system. The year-round grazing system utilized 1.67 acres of smooth bromegrass-orchardgrass-birdsfoot trefoil pasture per cow in the summer, and 1.25 acres of stockpiled tall fescue-red clover pasture per cow, 1.25 acres of stockpiled smooth bromegrass-red clover pasture per cow, and 1.25 acres of corn crop residues per cow during winter for spring- and fall-calving cows and stockers. First-cutting hay was harvested from the tall fescue-red clover and smooth bromegrass-red clover pastures to meet supplemental needs of cows and calves during winter. In the conventional system (called the minimal land system), spring-calving cows grazed smooth bromegrass-orchardgrass-birdsfoot trefoil pastures at 3.33 acres/cow during summer with first cutting hay removed from one-half of these acres. This hay was fed to these cows in a drylot during winter. All summer grazing was done by rotational stocking for both systems, and winter grazing of the corn crop residues and stockpiled forages for pregnant spring-calving cows and lactating fall-calving cows in the year-round system was managed by strip-stocking. Hay was fed to springcalving cows in both systems to maintain a mean body condition score of 5 on a 9-point scale, but was fed to fall-calving cows to maintain a mean body condition score of greater than 3. Over winter, fall-calving cows lost more body weight and condition than spring calving cows, but there were no differences in body weight or condition score change between spring-calving cows in either system. Fall- and spring-calving cows in the yearround grazing system required 934 and 1,395 lb. hay dry matter/cow for maintenance during the winter whereas spring-calving cows in drylot required 4,776 lb. hay dry matter/cow. Rebreeding rates were not affected by management system. Average daily gains of spring-born calves did not differ between systems, but were greater than fall calves. Because of differences in land areas for the two systems, weight production of calves per acre of cows in the minimal land system was greater than those of the year-round grazing system, but when the additional weight gains of the stocker cattle were considered, production of total growing animals did not differ between the two systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A year-round grazing system for spring- and fall-calving cows was developed to compare animal production and performance, hay production and feeding, winter forage composition changes, and summer pasture yield and nutrient composition to that from a conventional, or minimal land system. Systems compared forage from smooth bromegrass-orchardgrass-birdsfoot trefoil pastures for both systems in the summer and corn crop residues and stockpiled grass-legume pastures for the year-round system to drylot hay feeding during winter for the minimal land system. The year-round grazing system utilized 1.67 acres of smooth bromegrassorchardgrass- birdsfoot trefoil (SB-O-T) pasture per cow in the summer, compared with 3.33 acres of (SB-O-T) pasture per cow in the control (minimal land) system. In addition to SB-O-T pastures, the year-round grazing system utilized 2.5 acres of tall fescue-red clover (TFRC) and 2.5 acres of smooth bromegrass-red clover (SBRC) per cow for grazing in both mid-summer and winter for fall- and spring-calving cows, respectively. First-cutting hay was harvested from the TF-RC and SB-RC pastures, and regrowth was grazed for approximately 45 days in the summer. These pastures were then fertilized with 40 lbs N/acre and stockpiled for winter grazing. Also utilized during the winter for spring-calving cows in the year-round grazing system were corn crop residue (CCR) pastures at an allowance of 2.5 acres per cow. In the minimal land system, hay was harvested from three-fourths of the area in SB-O-T pastures and stored for feeding in a drylot through the winter. Summer grazing was managed with rotational stocking for both systems, and winter grazing of stockpiled forages and corn crop residues by year-round system cows was managed by strip-stocking. Hay was fed to maintain a body condition score of 5 on a 9 point scale for spring-calving cows in both systems. Hay was supplemented as needed to maintain a body condition score of 3 for fall-calving cows nursing calves through the winter. Although initial condition scores for cows in both systems were different at the initiation of grazing for both winter and summer, there were no significant differences (P > .05) in overall condition score changes throughout both grazing seasons. In year 1, fall-calving cows in the year-round grazing system lost more (P < .05) body weight during winter than spring-calving cows in either system. In year 2, there were no differences seen in weight changes over winter for any group of cows. Average daily gains of fall calves in the yearround system were 1.9 lbs/day compared with weight gains of 2.5 lbs/day for spring calves from both systems. Yearly growing animal production from pastures for both years did not differ between systems when weight gains of stockers that grazed summer pastures in the year-round grazing system were added to weight gains of suckling calves. Carcass characteristics for all calves finished in the feedlot for both systems were similar. There were no significant differences in hay production between systems for year 1; however, amounts of hay needed to maintain cows were 923, 1373, 4732 lbs dry matter/cow for year-round fall-calving, year-round spring-calving, and minimal land spring-calving cows, respectively. In year 2, hay production per acre in the minimal land system was greater (P < .05) than for the year-round system, but the amounts of hay required per cow were 0, 0, and 4720 lbs dry matter/cow for yearround fall-calving, year-round spring-calving, and minimal land spring-calving cows, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One non bt-corn hybrid (Pioneer 3489) and three btcorn hyrids (Pioneer 34RO7, Novartis NX6236, and Novartis N64-Z4) were planted in replicated 7.1-acre fields. After grain harvest, fields were stocked with 3 mature cows in midgestation to be strip-grazed as four paddocks over 126 days. Six similar cows were allotted to replicated drylots. All cows were fed hay as necessary to maintain a condition score of 5 on a 9-point scale. Cows were condition-scored biweekly and weighed monthly. Forage yield and weathering losses were determined by sampling one 4-m2 location per grazed or ungrazed paddock in each field with a minimum total of 2 locations of grazed or ungrazed forage per field. To measure forage selection during grazing, samples of grazed forage were collected from the rumen of one fistulated steer that grazed for 2 hours after ruminal evacuation. Non-bt-corn hybrids had greater (P<.05) infestation of corn borers in the upper stalk, lower stalk and ear shank than bt-corn hybrids. However, there were no differences in grain yields or dropped grain between hybrids. Crop residue dry matter, organic matter and in vitro digestible dry matter yields at the initiation of grazing did not differ between corn hybrids. Dry matter, organic matter and in vitro digestible dry matter losses tended (P<.10) to be greater from the NX6236 and N64-Z4 hybrids than from the 3489 and 34RO7 hybrids and were greater (P<.05) from grazed than non-grazed areas of the fields. At the initiation of grazing, dry matter concentrations of the crop residues from the NX6236 and N64-Z4 hybrids tended to be lower than those from the 3489 and 34RO7 hybrids. Crop residues from the NX6236 and N64-74 hybrids had lower concentrations of acid detergent fiber (P<.05) and acid detergent lignin (P=.07) and higher concentrations of in vitro digestible organic matter than the 3489 and 34RO7 hybrids. Over the grazing season, corn hybrid did not affect mean rates of change in forage composition. The concentration of in vitro digestible organic matter in forage selected by steers after two weeks of grazing did not differ. However, steers grazing corn crop residues consumed forage with higher (P<.05) concentrations of neutral detergent fiber, acid detergent fiber, and acid detergent insoluble nitrogen than steers fed hay. The acid detergent fiber concentration of forage selected by steers grazing the 3489 and N64-Z4 hybrids was lower (P < .05) than concentrations from the 34RO7 and NX6236 hybrids. In order to maintain similar body condition score changes, cows grazing crop residues from the 3489, 34RO7, NX6236, and N64-Z4 hybrids required 650, 628, 625, and 541 kg hay DM/cow compared with a hay requirement of 1447 kg hay DM/cow for cows maintained in a drylot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The winter component of a year-round grazing system involving grazing of corn crop residues followed by grazing stockpiled grass-legume forages was compared at the McNay Research Farm with that of the winter component of a minimal land system that maintained cows in drylot. In the summers of 1995 and 1996, two and one cuttings of hay per year were harvested from two 15-acre fields containing “Johnston” low endophtye tall fescue and red clover. Two cuttings of hay in 1995 and one cutting in 1996 were harvested from two 15-acre fields of smooth bromegrass and red clover. Hay yields were 4,236 and 4,600 pounds of dry matter per acre for the tall fescue-red clover in 1995 and 1996, and 2,239 and 2,300 pounds of dry matter per acre for the smooth bromegrass-red clover in 1995 and 1996. Following grain harvest, four 7.5-acre fields containing corn crop residues were stocked with cows at midgestation at an allowance of 1.5 acres per cow. Forage yields at the initiation of corn crop grazing in 1995 and 1996 were 3,757 and 3,551 pounds of dry matter per acre for corn crop residues. Stockpiled forage yields were 1,748 and 2,912 pounds of dry matter for tall fescue-red clover and 1,880 and 2,187 pounds for smooth bromegrass-red clover. Corn crop residues and stockpiled forages were grazed in a strip stocking system. For comparison, 20 cows in 1995 and 16 cows in 1996 were placed in two drylots simultaneously with initiation of corn crop grazing, where they remained throughout the winter and spring grazing periods. Cows maintained in drylots or grazing corn crop residue and stockpiled forages were supplemented with hay as large round bales to maintain a body condition score of five. In both years, no seasonal differences in body weight and body condition score were observed between grazing cows or cows maintained in drylots, but grazing cows required 85% and 98% less harvested hay in years 1 and 2 than cows in drylot during the winter and spring. Because less hay was needed to maintain grazing cows, excesses of 12,354 and 5,244 pounds of hay dry matter per cow in 1995 and 1996 remained in the year-round grazing system. During corn crop grazing, organic matter yield decreased at 23.5 and 28.8 pounds of organic matter per day from grazed areas of corn crop residues in 1995 and 1996. Organic matter losses due to weathering were 6.8, 10.3, and 12.7 pounds per day in corn crop residue, tall fescue-red clover and smooth bromegrass-red clover in 1995 and 12.1, 10.7, and 12.1 in 1996. Organic matter losses from grazed and ungrazed areas of tall fescue-red clover and smooth bromegrass-red clover during stockpiled grazing were 6.9, 6.9, and 2.1, 2.9 in 1995 and 13.4, 4.3, and +6.9, 4.4 pounds per day in 1996.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The winter component of a year-round grazing system involving grazing of corn crop residues followed by grazing stockpiled grass legume forages was compared at the McNay Research Farm with that of the winter component of a minimal land system that maintained cows in drylot,. In the summer of 1995, two cuttings of hay were harvested from two 15-acre fields containing “Johnston” endophyte-free tall fescue and red clover, and two cuttings of hay were taken from two 15-acre fields of smooth bromegrass and red clover. Hay yields were 4,236 and 4,600 pounds of dry matter per acre for the tall fescue--red clover and smooth bromegrass--red clover. Following grain harvest four 7.5-acre fields containing corn crop residue were stocked with cows at midgestation at an allowance of 1.5 acres per cow. Forage yields at the initiation of corn crop grazing were 3,766pounds of dry matter per acre for corn crop residue, 1,748 pounds for tall fescue--red clover, and 1,.880 pounds for smooth bromegrass--red clover. Corn crop residues and stockpiled forages were grazed in a strip stocking system. For comparison, 20 cows were placed in two drylots simultaneously to the initiation of corn crop grazing where they remained throughout the winter and spring grazing seasons. Cows maintained in drylot or grazing corn crop residue and stockpiled forages were supplemented with hay as large round bales to maintain a body condition score of five. No seasonal differences in body weight and body condition were observed between grazing cows or cows maintained in drylot, but grazing cows required 87% and 84% less harvested hay than cows in drylot during the winter and spring respectively. Because less hay was needed to maintain grazing cows, an excess of 11,905 and 12,803 pounds of hay dry matter per cow remained in the year-round grazing system. During corn crop grazing, organic matter yield decreased at 27.3 pounds of organic matter per day from grazed areas of corn crop residue. Organic matter losses due to weathering were 9.4, 12.9, and 15.8 pounds per day in corn crop residue, tall fescue-red clover and smooth bromegrass-red clover. Organic matter losses from grazed and ungrazed areas during stockpiled grazing were 7.3 and 6.9 for tall fescue--red clover and 2.1, 2.9 for smooth bromegrass--red clover.