12 resultados para PASTURES
em Digital Repository at Iowa State University
Resumo:
Pastures containing alfalfa-grass or smooth bromegrass were stocked with .6, .8, or 1.0 cow-calf units per acre to compare cow and calf production in rotational grazing systems managed for optimum forage quality. To remove excess forage early in the grazing season, yearling heifers or steers grazed with the cows in each pasture at a stocking rate of .6 ccu per acre for the first 28, 37, and 40 days of grazing in years one, two, and three. Live forage density and days of grazing per paddock were estimated by sward height. Cows, calves, and yearlings were weighed and cows condition scored every 28 days. All cows grazed for 140 days unless forage became limiting. The cows on the smooth bromegrass pasture stocked at 1.0 cow-calf units per acre were removed after 119 days in 1994, 129 days in 1995, and 125 days in 1996. Cows on one of the alfalfagrass pastures stocked at 1.0 ccu per acre were removed after 136 days of grazing in 1996 because of lack of forage. Alfalfa-grass pastures tended to have a more consistent supply of forage over the grazing season than the bromegrass pastures. Cows grazing the alfalfa-grass pastures had greater seasonal weight gains and body condition score increases and lower yearling weight gains than the smooth bromegrass pastures. Daily and total calf weight gains and total animal production also tended to be greater in alfalfa-cool season grass pastures. Increasing stocking rates resulted in significantly lower cow body condition increases and yearling weight gains, and also increased the amounts of calf and total growing animal produced.
Resumo:
Pastures containing alfalfa-smooth bromegrass or smooth bromegrass were stocked with .6, .8, or 1.0 cow-calf units per acre to compare cow and calf production in rotational grazing systems managed for optimum forage quality. To remove excess forage early in the grazing season, yearling heifers grazed with the cows in each pasture at a stocking rate of .6 heifers per acre for the first 28 days of grazing. Live forage density and days of grazing per paddock were estimated by sward height. Cows, calves, and heifers were weighed and cows condition scored every 28 days. All cows grazed for 140 days except those grazing the smooth bromegrass pasture stocked at 1.0 cow-calf units per acre; these were removed after 119 days in 1994 and 129 days in 1995 because of lack of forage. Alfalfa-grass pastures tended to have a more consistent supply of forage over the grazing season than the bromegrass pastures. Cows grazing the alfalfa-cool season grass pastures had greater seasonal weight gains and body condition score increases and lower heifer weight gains than the smooth bromegrass pastures. Daily and total calf weight gains and total animal production also tended to be greater in alfalfa-cool season grass pastures. Increasing stocking rates resulted in significantly lower condition increases and heifer weight gains, while increasing the amounts of calf and total growing animal produced.
Resumo:
The effect on meat quality of integrating pasturing systems into cattle finishing programs was observed over a two-year period. Year one consisted of 84 fall born calves and 28 spring born calves and year two consisted of 116 fall born calves. The effect of using Rumensinâ for cattle on bromegrass pasture was incorporated into year one. In year two cattle on pasture received bromegrass pasture, and one treatment group received switchgrass during the warm season. In both years there was a control group of calves that went directly to the feedlot with the remaining calves going to pasture for varying periods of time before being finished in drylot. At the conclusion of the feeding trial, cattle were processed into beef, and a ribeye steak was removed from each carcass for sensory evaluation. In year one cattle that were on pasture the longest had the lowest (P<0.05) average quality grades. In year two this trend was reversed, and cattle placed directly into drylot had the lowest (P<0.05) average quality grades. In both years cattle carcasses in all treatments averaged yield grade 2. Warner Bratzler shear force values were not affected by treatments. Sensory panel evaluations indicated tenderness was unaffected by treatments, and in year two flavor and flavor intensity were unaffected by treatments. In year one flavor intensity was lowest (P<0.05) for steaks derived from cattle that were on pasture the longest and received Rumensinâ. Inclusion of Rumensinâ for cattle on pasture did not influence yield and quality grades or affect tenderness, juiciness, and flavor. Results of this study indicate that steer calves placed on cool and warm season pastures prior to being finished in drylot, can produce carcasses with acceptable yield and quality grades and that the meat eating qualities will be largely unaffected by the inclusion of pasture.
Resumo:
Pastures containing hay-type and grazing tolerant alfalfa hybrids were grazed in a season-long or complementary rotational stocking system with Nfertilized smooth bromegrass. The pastures were stocked at a seasonal density of .8 cow-calf pairs per acre for 120 days in 1998 and 141 days in 1999. Pastures were intensively managed by daily stripstocking with the assumptions that 50% of live forage was available and daily live dry matter consumption of each cow-calf pair was 3.5% of the cow’s body weight. First-cutting forage was harvested as hay from 40% of the pasture acres to remove excess forage growth early in the grazing season. Grazing occurred on the remaining 60% of each pasture for the first 44 and 54 days and 100% of each pasture after days 45 and 55 in 1998 and 1999, respectively. Proportions of ‘Amerigraze’ and ‘Affinity’ alfalfa in the live forage dry matter decreased by 70% and 55% in pastures stocked season-long and by 60% and 42% in pastures used for complementary stocking (alfalfa type, p<.05; grazing management, p<.05) in 1998, but decreased by a mean of 72% and was unaffected by hybrid or stocking system in 1999. Cows grazing either alfalfa hybrid by either grazing system had greater weight gains during the breeding and overall grazing seasons and greater increases in body condition score pre-breeding and during the breeding season than the cows that grazed smooth bromegrass for the entire season in 1998. Also, cows grazing either alfalfa hybrid in the season-long system had greater breeding season increases in body condition score than cows grazing alfalfa in the complementary system with smooth bromegrass in 1998. Cows grazing in the season-long alfalfa system had greater prebreeding season weight (p<.10) increases and condition score (p<.05) increases than cows grazing alfalfa in the complementary system in 1999. Daily and seasonal body weight gains of calves were not affected (p>.10) by the presence of alfalfa in 1998 or by alfalfa type and grazing management in 1998 and 1999. Total animal production (cow and calf) in 1998 was greater (p<.10) from the season-long alfalfa pastures compared with the complementary stocked pastures. Total (p<.10) and live (p<.05) forage masses, estimated by monthly clippings, were greater in September of 1998 from the season-long alfalfa pastures than pastures using alfalfa for complementary stocking. Total (p<.10) and live (p<.05) forage masses were greater in August of 1999 from season-long alfalfa pastures than pastures using alfalfa for complementary stocking.
Resumo:
Pastures containing hay-type and grazing tolerant alfalfa hybrids were grazed in a season-long or complimentary rotational stocking system with Nfertilized smooth bromegrass. The pastures were stocked at a seasonal density of .8 cow-calf pairs per acre for 120 days. Pastures were intensively managed by daily strip-stocking with the assumptions that 50% of live forage was available and daily live dry matter consumption of each cow-calf pair was 3.5% of the cow’s body weight. First-cutting forage was harvested as hay from 40% of pasture acres to remove excess forage growth early in the grazing season. Forage was grazed from the remaining 60% of each pasture for the first 44 days of the experiment and then from the entire pasture thereafter. Live forage yields, estimated by monthly clippings, were greater in May and September on the season-long alfalfa pastures compared with the complementary pastures and on the alfalfa pastures compared with the N-fertilized smooth bromegrass pastures. The proportions of legumes in the live dry matter in pastures with grazing tolerant and hay-type alfalfas in the season-long grazing systems declined by 70% and 50%, respectively, in the 120 day trial. The proportions of legumes in the live dry matter in pastures with grazing tolerant and the hay-type alfalfas in the complementary grazing system declined 60% and 42%, respectively, in the 120 day trial. Cows grazing either alfalfa hybrid by either management system had greater weight gains during the breeding and grazing seasons and greater increases in body condition score prebreeding and during the breeding season than the cows that grazed N-fertilized smooth bromegrass for the entire season. Also, cows grazing either alfalfa in the season-long system had greater breeding season increases in body condition score than cows grazing alfalfa in the complementary system with N-fertilized smooth bromegrass. Daily gains and seasonal gains of calves from cows grazing the alfalfa pastures tended to be greater than those grazing N-fertilized smooth bromegrass. Within alfalfa treatments, calves of cows grazing alfalfa pastures in the season-long system tended to produce more pounds per acre than those of cows grazing alfalfa in the complementary systems.
Resumo:
Animal production, hay production and feeding, winter forage composition changes, and summer pasture yields and nutrient composition of a year-round grazing system for spring-calving and fall-calving cows were compared to those of a conventional, minimal land system. Cows in the year-round and minimal land systems grazed forage from smooth bromegrassorchardgrass-birdsfoot trefoil (SB-O-T) pastures at 1.67 and 3.33 acres, respectively, per cow in the summer. During the summer, SB-O-T pastures in the year-round grazing system also were grazed by stockers at 1.67 stockers per acre, and spring-calving and fall-calving cows grazed smooth bromegrass–red clover (SB-RC) and endophyte-free tall fescue–red clover (TF-RC) at 2.5 acres per cow for approximately 45 days in midsummer. In the year-round grazing system, spring-calving cows grazed corn crop residues at 2.5 acres per cow and stockpiled SB-RC pastures at 2.5 acres per cow; fallcalving cows grazed stockpiled TF-RC pastures at 2.5 acres per cow during winter. In the minimal land system, in winter, cows were maintained in a drylot on first-cutting hay harvested from 62.5–75% of the pasture acres during summer. Hay was fed to maintain a body condition score of 5 on a 9-point scale for springcalving cows in both systems and a body condition score of 3 for fall-calving cows in the year-round system. Over 3 years, mean body weights of fall-calving cows in the year-round system did not differ from the body weights of spring-calving cows in either system, but fall-calving cows had higher (P < .05) body condition scores compared to spring-calving cows in either system. There were no differences among all groups of cows in body condition score changes over the winter grazing season (P > .05). During the summer grazing season, fall-calving cows in the year- round system and springcalving cows in the minimal land system gained more body condition and more weight (P < .05) than springcalving cows in the year-round grazing system. Fall calves in the year-round system had higher birth weights, lower weaning weights, and lower average preweaning daily gains compared to either group of spring calves (P < .05). However, there were no significant differences for birth weights, weaning weights, or average pre-weaning daily gains between spring calves in either system over the 3-year experiment (P > .05). The amount of total growing animal production (calves and stockers) per acre for each system did not differ in any year (P > .05). Over the 3-year experiment, 1.9 ton more hay was fed per cow and 1 ton more hay was fed per cow–calf pair in the minimal land system compared to the year-round grazing system (P < .05).
Resumo:
Fifteen beef cow-calf producers in southern Iowa were selected based on locality, management level, historical date of grazing initiation and desire to participate in the project. In 1997 and 1998, all producers kept records of production and economic data using the Integrated Resource Management-Standardized Performance Analysis (IRM-SPA) records program. At the initiation of grazing on each farm in 1997 and 1998, Julian date, degree-days, cumulative precipitation, and soil moisture, phosphorus, and potassium concentrations were determined. Also determined were pH, temperature, and load-bearing capacity; and forage mass, sward height, morphology and dry matter concentration. Over the grazing season, forage production, measured both by cumulative mass and sward height, forage in vitro digestible dry matter concentration, and crude protein concentration were determined monthly. In the fall of 1996 the primary species in pastures on farms used in this project were cool-season grasses, which composed 76% of the live forage whereas legumes and weeds composed 8.3 and 15.3%, respectively. The average number of paddocks was 4.1, reflecting a low intensity rotational stocking system on most farms. The average dates of grazing initiation were May 5 and April 29 in 1997 and 1998, respectively, with standard deviations of 14.8 and 14.1 days. Because the average soil moisture of 23% was dry and did not differ between years, it seems that most producers delayed the initiation of grazing to avoid muddy conditions by initiating grazing at a nearly equal soil moisture. However, Julian date, degree-days, soil temperature and morphology index at grazing initiation were negatively related to seasonal forage production, measured as mass or sward height, in 1998. And forage mass and height at grazing initiation were negatively related to seasonal forage production, measured as sward height, in 1997. Moreover, the concentrations of digestible dry matter at the initiation of and during the grazing season and the concentrations of crude protein during the grazing season were lower than desired for optimal animal performance. Because the mean seasonal digestible dry matter concentration was negatively related to initial forage mass in 1997 and mean seasonal crude proteins concentrations were negatively related to the Julian date, degree-days, and morphology indeces in both years, it seems that delaying the initiation of grazing until pasture soils are not muddy, is limiting the quality as well as the quantity of pasture forage. In 1997, forage production and digestibility were positively related to the soil phosphorus concentration. Soil potassium concentration was positively related to forage digestibility in 1997 and forage production and crude protein concentration in 1998. Increasing the number of paddocks increased forage production, measured as sward height, in 1997, and forage digestible dry matter concentration in 1998. Increasing yields or the concentrations of digestible dry matter or crude protein of pasture forage reduced the costs of purchased feed per cow.
Resumo:
Animal production, hay production and feeding, and the yields and composition of forage from summer and winter grass-legume pastures and winter corn crop residue fields from a year-round grazing system were compared with those of a conventional system. The year-round grazing system utilized 1.67 acres of smooth bromegrass-orchardgrass-birdsfoot trefoil pasture per cow in the summer, and 1.25 acres of stockpiled tall fescue-red clover pasture per cow, 1.25 acres of stockpiled smooth bromegrass-red clover pasture per cow, and 1.25 acres of corn crop residues per cow during winter for spring- and fall-calving cows and stockers. First-cutting hay was harvested from the tall fescue-red clover and smooth bromegrass-red clover pastures to meet supplemental needs of cows and calves during winter. In the conventional system (called the minimal land system), spring-calving cows grazed smooth bromegrass-orchardgrass-birdsfoot trefoil pastures at 3.33 acres/cow during summer with first cutting hay removed from one-half of these acres. This hay was fed to these cows in a drylot during winter. All summer grazing was done by rotational stocking for both systems, and winter grazing of the corn crop residues and stockpiled forages for pregnant spring-calving cows and lactating fall-calving cows in the year-round system was managed by strip-stocking. Hay was fed to springcalving cows in both systems to maintain a mean body condition score of 5 on a 9-point scale, but was fed to fall-calving cows to maintain a mean body condition score of greater than 3. Over winter, fall-calving cows lost more body weight and condition than spring calving cows, but there were no differences in body weight or condition score change between spring-calving cows in either system. Fall- and spring-calving cows in the yearround grazing system required 934 and 1,395 lb. hay dry matter/cow for maintenance during the winter whereas spring-calving cows in drylot required 4,776 lb. hay dry matter/cow. Rebreeding rates were not affected by management system. Average daily gains of spring-born calves did not differ between systems, but were greater than fall calves. Because of differences in land areas for the two systems, weight production of calves per acre of cows in the minimal land system was greater than those of the year-round grazing system, but when the additional weight gains of the stocker cattle were considered, production of total growing animals did not differ between the two systems.
Resumo:
A year-round grazing system for spring- and fall-calving cows was developed to compare animal production and performance, hay production and feeding, winter forage composition changes, and summer pasture yield and nutrient composition to that from a conventional, or minimal land system. Systems compared forage from smooth bromegrass-orchardgrass-birdsfoot trefoil pastures for both systems in the summer and corn crop residues and stockpiled grass-legume pastures for the year-round system to drylot hay feeding during winter for the minimal land system. The year-round grazing system utilized 1.67 acres of smooth bromegrassorchardgrass- birdsfoot trefoil (SB-O-T) pasture per cow in the summer, compared with 3.33 acres of (SB-O-T) pasture per cow in the control (minimal land) system. In addition to SB-O-T pastures, the year-round grazing system utilized 2.5 acres of tall fescue-red clover (TFRC) and 2.5 acres of smooth bromegrass-red clover (SBRC) per cow for grazing in both mid-summer and winter for fall- and spring-calving cows, respectively. First-cutting hay was harvested from the TF-RC and SB-RC pastures, and regrowth was grazed for approximately 45 days in the summer. These pastures were then fertilized with 40 lbs N/acre and stockpiled for winter grazing. Also utilized during the winter for spring-calving cows in the year-round grazing system were corn crop residue (CCR) pastures at an allowance of 2.5 acres per cow. In the minimal land system, hay was harvested from three-fourths of the area in SB-O-T pastures and stored for feeding in a drylot through the winter. Summer grazing was managed with rotational stocking for both systems, and winter grazing of stockpiled forages and corn crop residues by year-round system cows was managed by strip-stocking. Hay was fed to maintain a body condition score of 5 on a 9 point scale for spring-calving cows in both systems. Hay was supplemented as needed to maintain a body condition score of 3 for fall-calving cows nursing calves through the winter. Although initial condition scores for cows in both systems were different at the initiation of grazing for both winter and summer, there were no significant differences (P > .05) in overall condition score changes throughout both grazing seasons. In year 1, fall-calving cows in the year-round grazing system lost more (P < .05) body weight during winter than spring-calving cows in either system. In year 2, there were no differences seen in weight changes over winter for any group of cows. Average daily gains of fall calves in the yearround system were 1.9 lbs/day compared with weight gains of 2.5 lbs/day for spring calves from both systems. Yearly growing animal production from pastures for both years did not differ between systems when weight gains of stockers that grazed summer pastures in the year-round grazing system were added to weight gains of suckling calves. Carcass characteristics for all calves finished in the feedlot for both systems were similar. There were no significant differences in hay production between systems for year 1; however, amounts of hay needed to maintain cows were 923, 1373, 4732 lbs dry matter/cow for year-round fall-calving, year-round spring-calving, and minimal land spring-calving cows, respectively. In year 2, hay production per acre in the minimal land system was greater (P < .05) than for the year-round system, but the amounts of hay required per cow were 0, 0, and 4720 lbs dry matter/cow for yearround fall-calving, year-round spring-calving, and minimal land spring-calving cows, respectively.
Resumo:
A comparison was made between two different summer grazing systems. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass--orchardgrass--birdsfoot trefoil pastures and winter stockpiles pastures with cowcalf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass--orchardgrass-- birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures and one fourth of the allocated summer pastures. Cow-calf pairs grazing in the year-round system utilized on fourth of the winter stockpile pastures due to lack of forage, whereas cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer. Grazing system did not affect cow body weight, condition score, or daily calf weight gain. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level.
Resumo:
A comparison was made between two different summer grazing systems at the McNay Research Farm. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil pastures and winter stockpile pastures with cow-calf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures in 1996 (Yr. 1) and all the pasture in 1997 (Yr. 2). One hay removal occurred on one fourth of the allocated summer pastures in Year 1 and one half of the pastures in Year 2. In Year one, cow-calf pairs grazing in the year-round system utilized one fourth of the winter stockpile pastures due to a lack of forage on the summer pastures, whereas in Year 2 cowcalf pairs grazed winter stockpile pastures to remove forage as a second cutting of hay. Cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer of Year 1 due to lack of grazable forage; in Year 2, no supplementation was needed. Grazing system did not affect cow body weight, condition score, or daily calf gain in either year. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level in Year 1 and Year 2. The year-round system also produced more net winter forage than did the minimal land system in Year 1. Differences in forage yield and quality were only observed between winter stockpile forages of tall fescue-red clover and smooth bromegrass-red clover and summer pastures during the months of June, July, and August.
Resumo:
Oat is the major spring-sown, small grain crop in Iowa. Spring-sown small grains can be used for grain and straw production, as a companion crop to establish hay and pastures, or as a source of early-season forage as hay or haylage. Because small grains generally mature before the end of July, a forage legume, cover crop, or green manure crop can follow oats, or animal manure can be spread on the field in which oats were grown.