2 resultados para PARENTERAL NUTRITION
em Digital Repository at Iowa State University
Resumo:
Forty-four Hampshire (H) and 41 Suffolk (S) ewes were allotted within breed to one of four treatment groups (VitA, VitE, VitAE, and Control) to evaluate the effect of supplemental vitamin E and A on reproductive performance of ewes mated on pasture or in drylot. Beginning two weeks before the mating period, ewes received 0 or 300 IU of vitamin E every 14 days and 0 or 250,000 IU of vitamin A every 28 days. Hampshire ewes remained on pasture during the mating period, whereas S ewes were moved to drylot. Treatment did not affect ovulation rate (OR), embryonic loss (EL), fetal loss (FL) or litter size (LS) of H ewes. Embryonic loss was higher (P<.05) in the H yearlings and two-year olds than in older ewes. Litter size was lower (P<.01) for H yearlings compared with other age groups. Suffolk ewes in the VitE group exhibited a lower (P<.01) OR than S ewes in other treatment groups, but no effect of treatment was observed for EL, FL, or LS. Although S yearling ewes did not differ from ewes of other age groups for OR and EL, they did produce fewer (P<.05) lambs. Analysis of serum samples revealed that H yearling ewes exhibited lower (P<.05) serum a-tocopherol levels than older H ewes. In addition, H ewes had a higher (P<.05) serum a-tocopherol level than S ewes at the beginning of study when they were managed as one group. Even though age and breed influenced certain reproductive parameters, results of this study indicate little effect of supplemental vitamin E and A on the overall reproductive efficiency of ewes mated on pasture or in drylot.
Resumo:
Two experiments were conducted to evaluate the effects of body condition scores of beef calves on performance efficiency and carcass characteristics. In Experiment 1, 111 steer calves were stratified by breed and condition score (CS) and randomly allotted to 14 pens. The study was analyzed as a 2 x 3 factorial design, with two breeds (Angus and Simmental) and three initial CS (4.4, 5.1, and 5.6). In Experiment 2, 76 steer calves were allotted to six pens by CS. The resultant pens averaged 3.9, 4.5, 4.7, 5.0, 5.1, and 5.6 in CS. Calves in both studies were fed a corn-based finishing diet formulated to 13.5% crude protein. All calves were implanted with Synovex- SÒ initially and reimplanted with Revalor-SÒ. In Experiment 1, 29-day dry matter intake (lb/day) increased with CS (17.9, 18.1, and 19.1 for 4.4, 5.1, and 5.6, respectively; p < .04). Daily gain (29 days) tended to decrease with increasing CS (4.19, 3.71, and 3.26; p < .13). Days on feed decreased with increasing CS (185, 180, and 178d; p < .07). In Experiment 2, daily gains also increased with decreasing initial CS for the first 114 days (p < .05) and tended to increase overall (p < .20). In Experiment 1, calves with lower initial CS had less external fat at slaughter (.48, .53, and .61 in. for CS 4.4, 5.1, and 5.6, respectively; p < .05). This effect was also noted at slaughter (p < .10), as well as at 57 days (p < .06) and at 148 days (p < .06) as measured by real-time ultrasound. Measurements of intramuscular fat and marbling were not different in either study. These data suggest that CS of feeder calves may be a useful tool for adjusting energy requirements of calves based on body condition. Also, feeder cattle may be sorted into outcome or management groups earlier than currently practiced using body condition and/or real-time ultrasound.