6 resultados para Oats.

em Digital Repository at Iowa State University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Economic comparisons of income on highly erodible land (HEL) in Adams County were made utilizing five years of grazing data collected from a 13- paddock intensive-rotational grazing system and a four-paddock rotational-grazing system and four years of data collected from an 18-paddock intensive-rotational grazing system, all at the Adams County CRP Research and Demonstration Farm near Corning. Net income from the average grazing weight-gain of Angus-sired calves nursing crossbred cows was compared to the net income from grazing yearling steers, to the net income of eight NRCS-recommended crop rotations, and to the Conservation Reserve Program (CRP) option. Results of these comparisons show the 13-paddock intensive rotational grazing system with cow-calf pairs to be the most profitable alternative, with a net return of $19.86 per acre per year. The second most profitable alternative is the CRP option, with a net return of $13.09 per acre, and the third most profitable option is the fourpaddock rotation with cows and calves with a net return of $12.53 per acre. An 18-paddock system returned a net income of $2.47 per acre per year with cows and calves in 1993, but lost an average of $107.69 per acre each year in 1994 and 1995 with yearling steers. Each year, the steers were purchased high and sold low, contributing to the large loss per acre. The following recommended crop rotations all show net losses on these 9-14 % slope, Adair-Shelby Complex soils (ApD3): continuous corn; corn-soybean rotation; corn-soybean rotation with a farm program deficiency payment; corn-corn-corn-oats-meadow-meadow rotation with grass headlands; continuous corn to “T” with grass headlands and buffer strips; continuous corn to “T” with grass headlands, buffer strips, and a deficiency payment; corn-corn-oats-meadow rotation to “T”; and corn-soybeans-oats-meadow-meadow-meadow-meadow rotation to “T”. Per-acre yield assumptions of 90 bushels for corn, 30 bushels for soybeans, 45 bushels for oats, and four tons for alfalfa were used, with per-bushel prices of $2.40 on corn, $5.50 on soybeans, and $1.50 on oats. Alfalfa hay was priced at $40.00 per ton and grass hay at $33.33 per ton. The calf weight-gain in the cow/ calf systems was valued at $.90 per pound. All crop expenses except land costs were calculated from ISU publication Fm 1712, “Estimated Costs of Crop Production in Iowa - 1995.” Land costs were determined by using an opportunity cost and actual property tax figures for the land at the grazing site. In preparation for the end of the CRP beginning in 1996, further economic comparisons will be made after additional grazing seasons and data collection. This project is an interagency cooperative effort sponsored by the Southern Iowa Forage and Livestock Committee which has special permission from the USDA Farm Service Agency (FSA) to use CRP land for research and demonstration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Berseem clover and oats were incorporated into a corncorn- oat/berseem clover rotation in 1994 and 1995. Two cuttings of oat-berseem clover hay were harvested during the summer before forage was allowed to stockpile for winter grazing. In 1995, a brown midrib sorghum x sudangrass hybrid was seeded into a field adjacent to a corn field. After corn grain harvest in 1994 and 1995, Charolais x Angus x Simmental cows in midgestation were allotted to replicated fields containing corn crop residues with no complementary forages at 2.5 acres/cow, or corn crop residues and stockpiled berseem clover (2:1) at 2.5 acres/cow to simultaneously graze, or to a drylot. In 1995, cows were allotted to fields containing corn crop residues and brown midrib sorghum x sudangrass (7:3) at 2.5 acres/cow. Berseem clover had greater concentrations of digestible organic matter and crude protein than corn crop residues at the initiation of grazing, but had a more rapid decrease in digestible organic matter concentration than corn crop residues. Brown midrib sorghum x sudangrass forage also had a higher initial concentration of digestible organic matter, but an equal rate of decrease in digestible organic matter concentration to corn crop residues in ungrazed areas of the field. Cows grazing berseem clover with corn crop residues had greater body condition score increases during the first half of the grazing season than cows grazing corn crop residues without complementary forages. Cows grazing corn crop residues without complementary forages required 2,786 and 1,412 less lb hay per cow than cows maintained in a drylot in 1994 and 1995. In 1994, simultaneous grazing of berseem clover with corn crop residues did not reduce hay feeding more than feeding corn crop residues alone. However, in 1995, grazing berseem clover or brown midrib sorghum x sudangrass with corn crop residues reduced the amount of hay required to maintain cows by 358 and 376 lb hay per cow compared with grazing corn crop residues without complementary forage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Berseem clover and oats were incorporated into a corn-oat/berseem clover rotation in 1994-1996. Two cuttings of oat-berseem clover hay were harvested during the summer before forage was stockpiled for winter grazing. In 1995, brown midrib sorghum x sudangrass hybrid was seeded into a field adjacent to a corn field. This was repeated in 1996 with a standard sorghum x sudangrass hybrid. After corn harvest in 1994–1996, Charolais x Angus x Simmental cows and heifers in midgestation were allotted to corn crop residue, corn crop residue-berseem clover, and corn crop residue-sorghum x sudangrass fields at 2.5 acres/cow, or to a drylot. Berseem clover had greater concentration of digestible organic matter and crude protein than corn crop residues. Corn crop residue digestible organic matter concentration was lower than berseem clover and the brown midrib sorghum x sudangrass, but was higher than that of the standard sorghum x sudangrass hybrid in 1996. Cows grazing corn crop residues without complementary forages required an average of 2,374 less lb. hay per cow than cows maintained in a drylot in 1994-1996. In 1994 and 1996, simultaneous grazing of berseem clover with corn crop residues did not reduce hay feeding more than feeding corn crop residues alone, yet did significantly reduce the amount of hay needed in 1995 to maintain cows by 358 and 376 lb. hay per cow compared with grazing corn crop residues without complementary forage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oat is the major spring-sown, small grain crop in Iowa. Spring-sown small grains can be used for grain and straw production, as a companion crop to establish hay and pastures, or as a source of early-season forage as hay or haylage. Because small grains generally mature before the end of July, a forage legume, cover crop, or green manure crop can follow oats, or animal manure can be spread on the field in which oats were grown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Neely-Kinyon Long-term Agroecological Research (LTAR) site was established in 1998 to study the long-term effects of organic production in Iowa. Treatments at the LTAR site, replicated four times in a completely randomized design, include the following rotations: conventional Corn-Soybean (C-S), organic Corn-Soybean-Oats/Alfalfa (C-SO/A), organic Corn-Soybean-Oats/AlfalfaAlfalfa (C-S-O/A-A) and Corn-SoybeanCorn-Oats/Alfalfa (C-SB-C-O/A). On April 13, 2011, Badger oats were underseeded with BR Goldfinch alfalfa at a rate of 90 lb/acre and 15 lb/acre, respectively. Following harvest of the organic corn plots in 2010, winter rye was no-till drilled at a rate of 75 lb/acre on October 20, 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Neely-Kinyon LTAR site was established in 1998 to study the long-term effects of organic production in Iowa. Treatments at the LTAR site, replicated four times in a completely randomized design, include the following rotations: conventional Corn-Soybean (C-S), organic Corn-Soybean-Oats/Alfalfa (C-S-O/A), organic Corn-Soybean-Oats/Alfalfa-Alfalfa (CS-O/A-A). A new rotation of Corn-SoybeanCorn-Oats/Alfalfa (C-SB-C-O/A) replaced the old S-W/RC rotation.