5 resultados para Hypothalamus-pituitary-adrenal axis
em Digital Repository at Iowa State University
Resumo:
Growth hormone (GH) is a metabolic hormone that plays an important role in long-bone growth and muscle accretion in mammals. The anterior pituitary gland at the base of the brain is the primary site of GH production and release into the general circulation. Neurons in the arcuate nucleus of the hypothalamus in the lower part of the brain secrete GH-releasing hormone ([GHRH] or factor [GRF]) and GH-release-inhibiting hormone ([GHRIH] or somatostatin [SRIH]) that acutely modulate GH secretion by the pituitary gland. The pituitary gland is connected to the median eminence of the hypothalamus by a stalk (hypophyseal stalk). Complete surgical removal of the pituitary gland (hypophysectomy) arrests growth and greatly impairs metabolism in laboratory and farm animal species. Daily subcutaneous injection of bovine GH (bGH) in immature hypophysectomized rats significantly increased body growth and epiphyseal plate width of the long-bone (tibia) compared with diluent-treated hypophysectomized controls. Growth rate was less, however, in the bGH-treated animals compared with intact controls. In beef calves, hypophysectomy completely arrested body weight gain and long-bone growth. GH is secreted in an episodic pattern in young growing intact calves. Episodic GH secretion was abolished immediately following hypophyseal stalk transection, and basal GH blood concentration was less than in shamoperated controls. Regardless, growth continued in these stalk-transected calves during a 1,008-day period, but at a lower growth rate than seen in the sham-operated controls. At autopsy, pituitary gland weight was greatly decreased in hypophyseal stalktransected compared with sham-operated calves. Thus, in spite of obliterated episodic GH release and decreased basal secretion of GH, the isolated pituitary gland of hypophyseal stalk transected calves continues to secrete sufficient amounts of GH for significant growth and development throughout a long period.
Resumo:
The hypothalamus in the lower part of the brain contains neurons that produce a small peptide, gonadotropin- releasing hormone (GnRH, LHRH), that regulates luteinizing hormone (LH) secretion by the anterior pituitary gland. Important functions of LH include induction of ovulation in preovulatory follicles during estrus and the luteinization of granulosa cells lining those collapsed follicles to form corpora lutea that produce progesterone during the luteal phase of the estrous cycle or during pregnancy. The production of progesterone by the corpus luteum conveys a negative feed-back action at the central nervous system (CNS) for further episodic secretion of GnRH and in turn, LH secretion. Gonadal removal (i.e., ovariectomy) allows a greater amount of LH secretion to occur during a prolonged period. The objectives of this study were to characterize the pattern of GnRH secretion in the cerebrospinal fluid (CSF) of the bovine third ventricle region of the hypothalamus, determine its correspondence with the tonic and surge release of LH in ovariectomized cows, and examine the dynamics of GnRH pulse release activity in response to known modulators of LH release (suckling, neuropeptide-Y [NPY]). In ovariectomized cows, both tonic release patterns and estradiol-induced surges of GnRH and LH were highly correlated. A 500-microgram dose of NPY caused an immediate cessation of LH pulses and decreased plasma concentrations of LH for at least 4 hours. This corresponded with a decrease in both GnRH pulse amplitude and frequency. In anestrous cows, GnRH pulse frequency did not change before and 48 to 54 hours after weaning on day 18 postpartum, but GnRH concentration and amplitudes of GnRH pulses increased in association with weaning and heightened secretion of LH. It is clear that high-frequency, highamplitude pulses of LH are accompanied by similar patterns of GnRH in CSF of adult cattle. Yet strong inhibitors of LH pulsatility, putatively acting at the level of the central nervous system (i.e., suckling) or at both the central nervous system and pituitary (NPY) levels, produced periods of discordance between GnRH and LH pulses.
Resumo:
Small peptide hormones produced in the lower part of the brain (hypothalamus) regulate episodic and basal secretion of hormones from the anterior pituitary gland that affect metabolism and growth in cattle. This study focused on long-term growth in young calves subjected to hypophysectomy (HYPOX), hypophyseal stalk transection (HST), and sham operation control (SOC). Crossbred (Hereford x Aberdeen Angus) and Hereford, and Aberdeen Angus calves were HYPOX (n = 5), HST (n = 5), or SOC (n = 8) at 146 days of age, whereas another group was HST (n = 5) or SOC (n = 7) at 273 days of age. Body weight was determined every 21 days from birth to 1008 days of age. From day 146-1008, growth was arrested (P < 0.001) in HYPOX (0.06 kg/day) compared with SOC (0.50 kg/day) calves. Growth continued but at a significantly lower rate (P < 0.05) in calves HST at 146 days (0.32 kg/day) and 273 days (0.32 kg/day) compared with SOC (0.50 kg/day). Although episodic growth hormone (GH) secretion was abolished and peripheral blood serum GH concentration remained consistently lower in HST calves (2.4 ng/ml) than in the SOC (5.5 ng/ml; P < 0.01), the calves continued to grow throughout 1008 days. Peripheral serum thyroid stimulating hormone (TSH) concentration was less (P < 0.05) in HST compared with SOC calves. There was an abrupt decrease (P < 0.001) in serum thyroxine (T4) (4-fold) and triiodothyronine (T3) (3-fold) concentration after surgery that remained to 360 days in HST compared with SOC calves. At sacrifice, pituitary gland weight was markedly reduced (P < 0.001) in HST (0.18 g/100 kg body weight) compared with SOC (0.55 g/100 kg body weight) calves. Histological examination of pituitary glands from HST calves indicated the persistence of secretory GH and TSH cells in the same areas of the anterior pituitary gland as SOC calves. Coronal sections of the gland revealed GH and TSH secreting cells in HST calves that were similar to the controls. These results indicate that long-term growth continues, but at a slower rate, after hypophyseal stalk transection of immature calves in spite of complete abolition of episodic GH secretion and consistently decreased basal secretion of GH, TSH, T4, and T3 compared with sham-operated animals. Growth was abolished after hypophysectomy of immature calves in which circulating GH and TSH was undetectable.
Resumo:
The requirement for growth hormone (GH) secretion by the anterior pituitary gland in beef calves is demonstrated by a complete lack of long bone-growth and muscle accretion after hypophysectomy (surgical removal of the pituitary gland). When the connecting link (hypophyseal stalk) to the basal region (hypothalamus) of the brain is surgically severed, long bone growth and body weight gain are greatly limited compared with sham-operated controls. This limited growth results from obliteration of episodic GH secretion and reduced basal blood concentration of the hormone compared with sham-operated controls. Thus, the hypophyseal stalk-transected (HST) calf provides an appropriate model to determine mechanisms by which hypothalamic neuropeptides from the brain regulate GH secretion, and thereby growth in the young calf. Neuropeptides have been isolated and characterized in bovine hypothalamus that stimulate GH secretion (GH-releasing hormone [GHRH]) or factor [GHRF] and inhibit GH secretion (GH release-inhibiting hormone [GHRIH] or somatostatin [SRIH]). A dose of .067 micrograms of GHRF per kilogram of body weight injected intravenously in HST calves abruptly increased plasma GH concentration to 55 nanograms per milliliter from the control period mean of 5 nanograms per milliliter. HST calves then were infused intravenously with .033 and .067 microgram somatostatin per kilogram of body weight, during which a pulse injection of .067 microgram of GHRF was administered. GH increase was limited to 9 and 5 micrograms per kilogram body weight during the .033- and .067 microgram SRIH infusions after GHRF; no GH rebound was observed after the SRIH was discontinued. GHRF from humans contains 40 to 44 amino acids. Rat hypothalamic GHRF analogs containing 29 to 32 amino acids elicited dose-dependent GH peak release in these HST calves. In 1977, Bowers and Monomy isolated novel GH releasing peptides consisting of only six amino acids; they caused GH release by isolated pituitary cells in culture and acute GH release when administered intravenously. We recently have utilized a novel nonpeptidyl GH secretagogue of low molecular weight in the pig to determine its mechanisms of action within the central nervous system.
Resumo:
The objective was to test the hypothesis that dopamine regulates prolactin (PRL) secretion by determining acute changes in catecholamine concentrations in hypophyseal portal blood of cattle and their relation to peripheral blood concentration of PRL in hypophyseal stalk-transected (HST) and sham-operated control (SOC). Holstein heifers were subjected to neurosurgery to collect hypophyseal portal blood with a stainless steel cannula designed with a cuff placed under the pituitary stalk and peripheral blood via a jugular vein catheter. PRL plasma concentration was measured by radioimmunoassay, and dopamine and norepinephrine in portal plasma by radioenzymatic assay. During anesthesia before HST or SOC, PRL plasma concentration ranged from 20–40 ng/ml throughout 255 minutes. PRL abruptly increased and remained above 90 ng/ml after HST, compared with a steady decrease to <20 ng/ml in SOC heifers throughout 440 minutes. Within 5 minutes after severing of the hypophyseal stalk, dopamine in portal blood (>8 ng/ml) was significantly increased (P<0.05) compared with peripheral blood (<2 ng/ml). Norepinephrine concentration in portal blood was significantly greater (P<0.05) than in peripheral blood during the first 60 minutes. The sustained high PRL level in peripheral plasma after severing the hypophyseal stalk stimulated hypothalamic dopamine secretion from hypophyseal portal vessels during the prolonged period of blood collection. Norepinephrine concentration in these cattle was greater in hypophyseal portal blood than in peripheral blood, implicating both an important hypothalamic source of the catecholamine as well as an adrenal gland contribution during anesthesia.