2 resultados para High impedance ground plane(HIGP)

em Digital Repository at Iowa State University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A digestibility trial, utilizing eight crossbred steers weighing initially 741 lbs. was conducted in an 8 x 8 Latin square design. High-fiber corn by-products were compared with corn as energy sources when fed in mixed diets with either lowor high-quality forage. Ground, dry corn stover and ground alfalfa hay were both fed alone or with corn grain, dried corn gluten feed (CGF), and dried corn distillers grains plus solubles (DDG) in a 1:1 ratio (dry basis). Total tract dry matter digestibility (DMD) was increased for both forages when fed with concentrates. Total tract DMD was similar in stover-based and alfalfa-based diets fed with CGF and DDG. However, stover+corn was lower in DMD than either stover+CGF and stover+DDG. Conversely, alfalfa+corn was higher in DMD than alfalfa+CGF or alfalfa+DDG. Feeding stover with corn tended to decrease digestibility of neutral detergent fiber (NDF), while feeding stover with CGF or DDG increased NDFD. There was no effect upon NDF digestion of alfalfa-based diets when fed with any of the concentrates. Feeding either forage with a concentrate increased digestible energy (DE). Stover+CGF and stover+DDG were similar in DE and were both higher in DE than stover+corn. Alfalfa+DDG tended to be higher than alfalfa+CGF and was similar to alfalfa+corn in DE. Alfalfa+CGF was lower in DE compared with alfalfa+corn. Results are interpreted to indicate that stover is more susceptible to negative feed interactions caused by corn grain than is alfalfa. Additionally, highfiber corn co-products fed with stover resulted in a positive associative effect but essentially had no associative effect when fed with alfalfa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High tunnels are simple, plastic-covered, passive solar-heated structures in which crops are grown in the ground. They are used by fruit and vegetable growers to extend the growing season and intensify production in cold climates. The covered growing area creates a desert-like environment requiring carefully monitored irrigation practices. In contrast, the exterior expanse of a high tunnel generates a large volume of water with every measurable rainfall. Each 1,000 ft of high tunnel roof will generate approximately 300 gallons from a half inch of rain. Unless the high tunnel site is elevated from the surrounding area or drainage tiles installed, or other drainage accommodations are made around the perimeter, the soil along the inside edge of the high tunnel is nearly continuously saturated. High volumes of water can also create an erosion problem. The objective of this project was to design and construct a system that enables growers using high tunnels in their production operation to reduce drainage problems, erosion, and crop loss due to excess moisture in and around their high tunnel(s) without permanent environmental and soil mediations.