10 resultados para Corn and Brachiaria - Intercropping systems
em Digital Repository at Iowa State University
Resumo:
Finishing yearling steers fed a corn-based diet containing steep liquor had statistically similar live performance as steers fed the control diet. Numerically steers fed the steep containing diet were 6% more efficient. Steers fed steep liquor tended to contain less carcass fat (as measured by intramuscular marbling) less kidney, heart and pelvic fat, and less backfat thickness. When priced at $50/ton adding steep liquor at 10% of diet dry matter reduced feed cost for gain 9%.
Resumo:
No-till minimizes the incorporation of crop residue and fertilizer with soil; resulting in wetter, colder soils and the accumulation of organic matter, phosphorus (P), and potassium (K) near the soil surface. Banding of P and Kcould be more effective than broadcast fertilization by counteracting stratification, applying nutrients in the root zone (starter effect), and minimizing reactions with the soil that may reduce their availability to plants. Therefore, a long-term study was established in 1994 to evaluate P and K fertilizer rates and placement methods for grain yield of corn and soybean managed with no-till and chiselplow/disk tillage.
Resumo:
No-till management for corn and soybean results in little or no incorporation of crop residues and fertilizer with soil. Subsurface banding phosphorus (P) and potassium (K) fertilizers with planter attachments could be more effective than broadcast fertilization, because in no-till with broadcast fertilizer, both nutrients accumulate at or near the soil surface. A long-term study was initiated in 1994 at the ISU Northwest Research Farm to evaluate P and K fertilizer placement for corn and soybean managed with no-till and chiselplow tillage.
Resumo:
No-till management limits the incorporation of crop residue and fertilizer with soil resulting in wetter, colder soils and the accumulation of organic matter, phosphorus (P), and potassium (K) near the soil surface. Banding of P and K could be more effective than broadcast fertilization by counteracting stratification, applying nutrients in the root zone (starter effect), and minimizing reactions with the soil that may reduce their availability to plants. Therefore, this long-term study was established in 1994 to evaluate P and K fertilizer placement methods and grain yield of corn-soybean rotations managed with notill and chisel-plow/disk tillage.
Resumo:
Animal production, hay production and feeding, winter forage composition changes, and summer pasture yields and nutrient composition of a year-round grazing system for spring-calving and fall-calving cows were compared to those of a conventional, minimal land system. Cows in the year-round and minimal land systems grazed forage from smooth bromegrassorchardgrass-birdsfoot trefoil (SB-O-T) pastures at 1.67 and 3.33 acres, respectively, per cow in the summer. During the summer, SB-O-T pastures in the year-round grazing system also were grazed by stockers at 1.67 stockers per acre, and spring-calving and fall-calving cows grazed smooth bromegrass–red clover (SB-RC) and endophyte-free tall fescue–red clover (TF-RC) at 2.5 acres per cow for approximately 45 days in midsummer. In the year-round grazing system, spring-calving cows grazed corn crop residues at 2.5 acres per cow and stockpiled SB-RC pastures at 2.5 acres per cow; fallcalving cows grazed stockpiled TF-RC pastures at 2.5 acres per cow during winter. In the minimal land system, in winter, cows were maintained in a drylot on first-cutting hay harvested from 62.5–75% of the pasture acres during summer. Hay was fed to maintain a body condition score of 5 on a 9-point scale for springcalving cows in both systems and a body condition score of 3 for fall-calving cows in the year-round system. Over 3 years, mean body weights of fall-calving cows in the year-round system did not differ from the body weights of spring-calving cows in either system, but fall-calving cows had higher (P < .05) body condition scores compared to spring-calving cows in either system. There were no differences among all groups of cows in body condition score changes over the winter grazing season (P > .05). During the summer grazing season, fall-calving cows in the year- round system and springcalving cows in the minimal land system gained more body condition and more weight (P < .05) than springcalving cows in the year-round grazing system. Fall calves in the year-round system had higher birth weights, lower weaning weights, and lower average preweaning daily gains compared to either group of spring calves (P < .05). However, there were no significant differences for birth weights, weaning weights, or average pre-weaning daily gains between spring calves in either system over the 3-year experiment (P > .05). The amount of total growing animal production (calves and stockers) per acre for each system did not differ in any year (P > .05). Over the 3-year experiment, 1.9 ton more hay was fed per cow and 1 ton more hay was fed per cow–calf pair in the minimal land system compared to the year-round grazing system (P < .05).
Resumo:
Swine manure and fertilizer can be used to supply the nitrogen (N) and phosphorus (P) needs of crops. Excess P application sometimes applied with N-based manure for corn increases the risk of P loss and water quality impairment. Poor water quality in Iowa streams and lakes due to excess P has prompted questions about the impact of cropping and nutrient management systems on P loss from fields.
Resumo:
Three specialty corns, high oil, high protein and high oil with high protein, were compared with control corn in a 113-day steer feeding trial. During the first 63 days of the study, steers fed the corns containing more oil had slower gain and poorer feed conversion compared with the control corn. At the end of the trial there were no statistically significant differences in performance of steers fed the different corns. Steers fed the high protein corn tended to have higher grading carcasses compared with those fed the control corn. Otherwise there were no differences in carcass measurements due to source of corn fed the steers. Feed cost of gain was reduced with the high-protein corn and the corn with high fat and high protein compared with the control corn because of similar feed conversions and the reduced amount of soybean meal needed to supplement the specialty corns.
Resumo:
Corn is planted earlier each year, which is one important component in maximizing grain yield. Earlier planting dates can be attributed to larger farms, less spring tillage, improvements in corn hybrids, improved drainage systems, and better seed treatments. Research conducted at the ISU Northwest Research Farm from 2006 through 2009 showed that the planting window for 98 percent or greater yield potential in northwest Iowa is April 15 to May 9. A 95 percent or greater yield potential can be realized from April 15 to May 18. A study was conducted from 2009 through 2011 at the Northwest Research Farm to determine how corn planted in early April compares with corn planted in the recommended planting window for the area.
Resumo:
The purpose of this study was to evaluate the effectiveness of Bt corn and soil insecticides, either alone or in combination, for the control of corn rootworm. Evaluation of Bt hybrids included SmartStax, SmartStax with refuge in a bag, and Herculex XTRA. Soil insecticides evaluated were SmartChoice-SB, Counter-SB, Aztec, and Force.
Resumo:
The purpose of this study was to evaluate the effectiveness of Bt corn and soil insecticides, either alone or in combination, for the control of corn rootworm. Evaluation of Bt hybrids included SmartStax, SmartStax with a blended refuge (refuge in the bag), and Herculex XTRA. Soil insecticides evaluated were SmartChoice-SB, Counter-SB, Aztec, and Force.