51 resultados para steer calves
Resumo:
Epizootic hemorrhagic disease virus (EHDV), an arthropod-borne orbivirus, causes significant mortality in white-tailed deer and can also cause disease in cattle. Objectives of this preliminary investigation were 1) to survey cattle at auction markets to determine the prevalence of anti-EHDV antibodies in Iowa cattle, 2) to determine EHDV seroprevalence in herds in which clinical EHD had been diagnosed, and 3) to determine whether EHDV is associated with stillbirths and/or congenital anomalies in calves. There was a 15% seroprevalence in auction market cattle; positive cattle were from southern, central, and western Iowa. Herds in which clinical EHD had been diagnosed had >60% seroprevalence. Viremia was detected in both clinically affected and unaffected cattle during an EHD outbreak. EHDV exposure was not consistently associated with congenital anomalies. Although additional surveillance is warranted, EHDV is unlikely to have a significant effect on the reproductive health of Iowa cattle.
Resumo:
One non bt-corn hybrid (Pioneer 3489) and three btcorn hyrids (Pioneer 34RO7, Novartis NX6236, and Novartis N64-Z4) were planted in replicated 7.1-acre fields. After grain harvest, fields were stocked with 3 mature cows in midgestation to be strip-grazed as four paddocks over 126 days. Six similar cows were allotted to replicated drylots. All cows were fed hay as necessary to maintain a condition score of 5 on a 9-point scale. Cows were condition-scored biweekly and weighed monthly. Forage yield and weathering losses were determined by sampling one 4-m2 location per grazed or ungrazed paddock in each field with a minimum total of 2 locations of grazed or ungrazed forage per field. To measure forage selection during grazing, samples of grazed forage were collected from the rumen of one fistulated steer that grazed for 2 hours after ruminal evacuation. Non-bt-corn hybrids had greater (P<.05) infestation of corn borers in the upper stalk, lower stalk and ear shank than bt-corn hybrids. However, there were no differences in grain yields or dropped grain between hybrids. Crop residue dry matter, organic matter and in vitro digestible dry matter yields at the initiation of grazing did not differ between corn hybrids. Dry matter, organic matter and in vitro digestible dry matter losses tended (P<.10) to be greater from the NX6236 and N64-Z4 hybrids than from the 3489 and 34RO7 hybrids and were greater (P<.05) from grazed than non-grazed areas of the fields. At the initiation of grazing, dry matter concentrations of the crop residues from the NX6236 and N64-Z4 hybrids tended to be lower than those from the 3489 and 34RO7 hybrids. Crop residues from the NX6236 and N64-74 hybrids had lower concentrations of acid detergent fiber (P<.05) and acid detergent lignin (P=.07) and higher concentrations of in vitro digestible organic matter than the 3489 and 34RO7 hybrids. Over the grazing season, corn hybrid did not affect mean rates of change in forage composition. The concentration of in vitro digestible organic matter in forage selected by steers after two weeks of grazing did not differ. However, steers grazing corn crop residues consumed forage with higher (P<.05) concentrations of neutral detergent fiber, acid detergent fiber, and acid detergent insoluble nitrogen than steers fed hay. The acid detergent fiber concentration of forage selected by steers grazing the 3489 and N64-Z4 hybrids was lower (P < .05) than concentrations from the 34RO7 and NX6236 hybrids. In order to maintain similar body condition score changes, cows grazing crop residues from the 3489, 34RO7, NX6236, and N64-Z4 hybrids required 650, 628, 625, and 541 kg hay DM/cow compared with a hay requirement of 1447 kg hay DM/cow for cows maintained in a drylot.
Resumo:
An in situ study was conducted to evaluate the effects of heat treatments on the degradation kinetics and escape protein concentrations of forages (alfalfa and berseem clover). Alfalfa collected at 4 and 7 weeks post-harvest and berseem clover collected at 5 and 7 weeks postharvest were freeze-dried and then heated to 100, 125, and 150o C for 2 hours. Heat treatment effects were determined by placing two bags of sample (for each treatment, maturity, and forage species for a given incubation times) into the rumen of one fistulated steer fed alfalfa hay. Bags were incubated for periods of 0 to 48 hours. Increasing levels of heat treatments of forages increased concentrations of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent insoluble nitrogen (ADIN) and non-degradable protein (NDP), potentially degradable protein proportion (PDP), and protein escaping rumen degradation (PEP) while decreasing water soluble protein (WSP) and the rates of crude protein (CP), except immature berseem clover and cell wall (CW) degradation. PEP was greater and rate of CP degradation was lower at 100 and 150o C compared to 125o C in immature berseem clover.
Resumo:
Two consecutive in situ studies were conducted to determine the effects of maturity and frost killing of forages (alfalfa and berseem clover) on degradation kinetics and escape protein concentrations. Four maturities (3, 5, 7, and 9 weeks after second harvest) of forages collected from three locations were used to determine the effects of maturity. Four weeks after a killing frost (-2o C), berseem clover was harvested from the same locations previously sampled. To evaluate maturity, 336 DacronÒ bags containing all maturities of either alfalfa or berseem clover were placed into the rumen of two fistulated steers fed alfalfa-grass hay. Frost killing effects of berseem clover were compared with maturecut berseem clover by placing DacronÒ bags into the rumen of one fistulated steer fed alfalfa hay. Bags were incubated for periods of 0 to 48 hours. With increasing maturity, the proportion of non-degradable protein (NDP) and the rate of crude protein (CP) degradation increased in both forages. While the rate of neutral detergent fiber (NDF) degradation and potentially degradable protein proportion (PDP) increased with increasing maturity in alfalfa, the rate of NDF degradation and PDP proportion decreased and proportion of water soluble protein (WSP) increased in berseem clover. The proportion of protein escaping rumen degradation (PEP) was greater in berseem clover than alfalfa, but was not affected by maturity. Frost killing of mature berseem clover decreased WSP proportion and increased PDP proportion compared to mature berseem clover harvested live. Even though ADIN concentration was higher for frost-killed berseem clover, PEP and total escape protein concentration (CEP) was also higher for frostkilled berseem clover than mature berseem clover harvested live, due to decreases in the rate of ruminal N degradation with frost-killing.
Resumo:
Futures did reduce price risk. Hedging produced a higher minimum return and higher return at the 25th percentile (75% of the returns are better than this figure) than did the cash market. The 50th percentile, or median return, was higher for yearlings in the cash market than hedged cattle, and the calves had mixed results. Although the differences are not great, there have been months when the option strategies performed better than cash or futures, (i.e., January–April and September–October), and there are months when they did not fare well (i.e., June–August).
Resumo:
Two heifer replacement strategies were compared over a 25-year period. One strategy retained the same number of heifers each year to maintain a constant herd size. The second strategy retained the same dollar value of heifer calves each year based on their opportunity cost as feeder calves. The constant investment strategy herd size varied throughout the period, but generated higher average profit and higher net worth than did the constant herd size strategy. Constant investment is a simple strategy to adjust the level of investment in beef cows and the resource base (pasture, labor, winter feed) in response to market signals driven by the cattle cycle. This strategy automatically increases heifer retention when the opportunity cost is low and reduces the number retained when cost is high. The effect is a lower average cost of cows in the herd, lower overall investment, and a higher net return on investment. Iowa producers, who often have greater flexibility in land use than producers in other major beef cow regions, can better utilize this strategy that generates greater profits and net worth growth.