51 resultados para steer calves


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-year study was conducted to integrate pasturing systems with drylot feeding systems. Each year 84 fall-born and 28 spring-born calves of similar genotypes were used. Fall-born calves were started on test in May, and spring-born calves were started in October. Seven treatments were imposed: 1) fall-born calves directly into the feedlot (28 steers); 2 and 3) fall-born calves put on pasture with or without an ionophore and moved to the feedlot at the end of July (14 steers in each treatment); 4 and 5) fall-born calves put on pasture with or without an ionophore and moved to the feedlot at the end of October (14 steers in each treatment); and 6 and 7) spring-born calves put on pasture with or without an ionophore and moved to the feedlot at the end of October (14 steers in each treatment). Cattle on pasture receiving an ionophore gained faster (P=.009), but lost this advantage in drylot (P>.10). Overall, cattle started directly in the feedlot had higher gains (P<.001). Cattle receiving an ionophore on pasture had lower KPH than those that did not receive an ionophore (P<.01). Treatment influenced yield grade (P<0.001), although all treatments were YG 2. The percentage of cattle grading Prime and Choice was 75 % or higher for all treatment groups. The results show that using an ionophore improved pasture gains and that pasture treatments did not adversely influence yield and quality grades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This progress report presents the findings of the first two years of a multi-year study. Each year 84 fall-born and 28 spring-born calves of similar genetic background were used to evaluate the incorporation of rotational pasturing systems into cattle finishing programs. The fall-born calves were started on test on May 7, 1996, and May 8, 1997, whereas the spring-born calves were started on test on October 1, 1996, and September 13, 1997. A total of seven treatments were imposed: 1) fall-born calves directly into the feedlot; 2) fall-born calves put on pasture and receiving an ionophore and moved to the feedlot on July 30, 1996, and July 29, 1997 in the first and second years, respectively; 3) fall-born calves put on pasture without an ionophore and moved to the feedlot on July 30, 1996 and July 29, 1997, in the first and second years, respectively; 4) fall-born calves put on pasture and receiving an ionophore and moved to the feedlot on October 22, 1996, and October 21, 1997, in the first and second years, respectively; 5) fall-born calves put on pasture without an ionophore and moved to the feedlot on October 22, 1996, and October 21, 1997, in the first and second years, respectively; 6) spring-born calves put on pasture and receiving an ionophore and moved to the feedlot on October 22, 1996, and October 21, 1997, in the first and second years, respectively; and 7) spring-born calves put on pasture without an ionophore and moved to the feedlot on October 22, 1996, and October 21, 1997, in the first and second years, respectively. Cattle receiving an ionophore on pasture gained more rapidly; however, cattle without access to an ionophore gained more rapidly in drylot thus negating the advantage obtained on pasture. Overall daily gains and feed conversions in drylot only, improved with increasing numbers of days fed in drylot; however, this may not be very cost effective. At similar end weights no real differences were observed in yield grades among the treatments; however, for fall-born calves the percentage grading Prime and Choice was higher for cattle fed longer in drylot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, 84 fall-born and 28 spring-born calves of similar genetic background were used to evaluate the incorporation of rotational pasturing systems into cattle finishing programs. Because the second-year trial is not complete, this report will include only the first year of the five-year study. Seven treatments were imposed: 1) fall-born calves put directly into the feedlot on May 7, 1996; 2) fall-born calves put on pasture and receiving an ionophore and moved to the feedlot on July 30, 3) fall born calves put on pasture on May 7 and not receiving an ionophore and moved to the feedlot on July 30; 4) fall-born calves put on pasture on May 7 and receiving an ionophore and moved to the feedlot on October 22; 5) fall-born calves put on pasture on May 7 and not receiving an ionophore and moved to the feedlot on October 22; 6) spring-born calves put on pasture on October 1 and receiving an ionophore and moved to the feedlot on October 22; and 7) spring-born calves put on pasture on October 1 and not receiving an ionophore and moved to feedlot on October 22. Performance data showed that cattle on pasture receiving an ionophore had higher gains than those not receiving an ionophore on pasture. This trend was reversed in the feedlot period. Yield grades were not greatly influenced by treatment, although quality grades tended to be higher for older cattle and those cattle that were in drylot for a longer period of time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An evaluation of carcass data collected over a two year period from southwest Iowa steer tests and 4-H carcass shows was conducted to compare USDA yield grades called by the Federal grader to yield grades calculated by actual carcass measurements. A regression equation was developed to predict called yield grade from carcass measurements. A comparison of the generated equation with the USDA equation used in calculating yield grades suggest that USDA graders accurately predict preliminary yield grades based on fat thickness, but may not have adequate time at line speeds to fully account for adjustments in ribeye size relative to carcass weight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have identified a new group A rotavirus associated with diarrheic calves in the field. The VP7 gene of this virus (designated VMRI-29), appears to differ genetically from that of the reference strain NCDV-Lincoln. Studies are underway to determine the importance of this genetic variant in the etiology of rotavirus-induced calf diarrhea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this experimentation was to determine if circulating antibody titers to parainfluenza type-3 (PI-3) and infectious bovine rhinotracheitis (IBR) viruses could be enhanced by a combination of vaccines. The vaccines utilized were a modified live virus vaccine administered by the intranasal route and an inactivated virus vaccine injected intramuscularly. Virus neutralization tests were conducted on sera obtained at intervals before and following vaccination. Unfortunately, the calves were apparently exposed naturally to PI-3 virus, and the responses to that virus were inconclusive. However, antibody responses to IBR virus were dramatically enhanced by the combination of the two vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In September 1995, 225 spring-born calves were weaned on pasture at the McNay Memorial Research and Demonstration Farm to explore procedures necessary to conduct a successful pasture-weaning program. In the two to three week post-weaning period, average daily gains (ADG) for the two groups weaned that year were 1.06 and 3.06 pounds; there were no health problems. In 1996, a research trial utilizing 242 spring-born calves was conducted to compare pastureweaned and feedlot-weaned calves. Half of the calves were weaned on pasture for three weeks and then placed in a feedlot for three more weeks. The other half of the calves were weaned directly into the feedlot for the six week post-weaning period. ADGs during the three week post-weaning period were 1.24 and 2.42 for the pastureweaned and feedlot-weaned calves. For the entire six week trial, ADGs were 1.83 and 2.40 for the pastureweaned and feedlot-weaned calves. There was no sickness in either weaning treatment during the six week trial. Initial experience indicates pasture-weaning is a feasible method of getting calves through a stressful procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animal production, hay production and feeding, winter forage composition changes, and summer pasture yields and nutrient composition of a year-round grazing system for spring-calving and fall-calving cows were compared to those of a conventional, minimal land system. Cows in the year-round and minimal land systems grazed forage from smooth bromegrassorchardgrass-birdsfoot trefoil (SB-O-T) pastures at 1.67 and 3.33 acres, respectively, per cow in the summer. During the summer, SB-O-T pastures in the year-round grazing system also were grazed by stockers at 1.67 stockers per acre, and spring-calving and fall-calving cows grazed smooth bromegrass–red clover (SB-RC) and endophyte-free tall fescue–red clover (TF-RC) at 2.5 acres per cow for approximately 45 days in midsummer. In the year-round grazing system, spring-calving cows grazed corn crop residues at 2.5 acres per cow and stockpiled SB-RC pastures at 2.5 acres per cow; fallcalving cows grazed stockpiled TF-RC pastures at 2.5 acres per cow during winter. In the minimal land system, in winter, cows were maintained in a drylot on first-cutting hay harvested from 62.5–75% of the pasture acres during summer. Hay was fed to maintain a body condition score of 5 on a 9-point scale for springcalving cows in both systems and a body condition score of 3 for fall-calving cows in the year-round system. Over 3 years, mean body weights of fall-calving cows in the year-round system did not differ from the body weights of spring-calving cows in either system, but fall-calving cows had higher (P < .05) body condition scores compared to spring-calving cows in either system. There were no differences among all groups of cows in body condition score changes over the winter grazing season (P > .05). During the summer grazing season, fall-calving cows in the year- round system and springcalving cows in the minimal land system gained more body condition and more weight (P < .05) than springcalving cows in the year-round grazing system. Fall calves in the year-round system had higher birth weights, lower weaning weights, and lower average preweaning daily gains compared to either group of spring calves (P < .05). However, there were no significant differences for birth weights, weaning weights, or average pre-weaning daily gains between spring calves in either system over the 3-year experiment (P > .05). The amount of total growing animal production (calves and stockers) per acre for each system did not differ in any year (P > .05). Over the 3-year experiment, 1.9 ton more hay was fed per cow and 1 ton more hay was fed per cow–calf pair in the minimal land system compared to the year-round grazing system (P < .05).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Economic comparisons of income on highly erodible land (HEL) in Adams County were made utilizing five years of grazing data collected from a 13- paddock intensive-rotational grazing system and a four-paddock rotational-grazing system and four years of data collected from an 18-paddock intensive-rotational grazing system, all at the Adams County CRP Research and Demonstration Farm near Corning. Net income from the average grazing weight-gain of Angus-sired calves nursing crossbred cows was compared to the net income from grazing yearling steers, to the net income of eight NRCS-recommended crop rotations, and to the Conservation Reserve Program (CRP) option. Results of these comparisons show the 13-paddock intensive rotational grazing system with cow-calf pairs to be the most profitable alternative, with a net return of $19.86 per acre per year. The second most profitable alternative is the CRP option, with a net return of $13.09 per acre, and the third most profitable option is the fourpaddock rotation with cows and calves with a net return of $12.53 per acre. An 18-paddock system returned a net income of $2.47 per acre per year with cows and calves in 1993, but lost an average of $107.69 per acre each year in 1994 and 1995 with yearling steers. Each year, the steers were purchased high and sold low, contributing to the large loss per acre. The following recommended crop rotations all show net losses on these 9-14 % slope, Adair-Shelby Complex soils (ApD3): continuous corn; corn-soybean rotation; corn-soybean rotation with a farm program deficiency payment; corn-corn-corn-oats-meadow-meadow rotation with grass headlands; continuous corn to “T” with grass headlands and buffer strips; continuous corn to “T” with grass headlands, buffer strips, and a deficiency payment; corn-corn-oats-meadow rotation to “T”; and corn-soybeans-oats-meadow-meadow-meadow-meadow rotation to “T”. Per-acre yield assumptions of 90 bushels for corn, 30 bushels for soybeans, 45 bushels for oats, and four tons for alfalfa were used, with per-bushel prices of $2.40 on corn, $5.50 on soybeans, and $1.50 on oats. Alfalfa hay was priced at $40.00 per ton and grass hay at $33.33 per ton. The calf weight-gain in the cow/ calf systems was valued at $.90 per pound. All crop expenses except land costs were calculated from ISU publication Fm 1712, “Estimated Costs of Crop Production in Iowa - 1995.” Land costs were determined by using an opportunity cost and actual property tax figures for the land at the grazing site. In preparation for the end of the CRP beginning in 1996, further economic comparisons will be made after additional grazing seasons and data collection. This project is an interagency cooperative effort sponsored by the Southern Iowa Forage and Livestock Committee which has special permission from the USDA Farm Service Agency (FSA) to use CRP land for research and demonstration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grazing yearling steers is one way to utilize the forages required for participation in the Conservation Reserve Program (CRP) after CRP contracts expire. In 1995, a stocker-steer intensive-rotational grazing study was conducted at the CRP Research and Demonstration Project near Corning, Iowa. A similar study was carried out in 1994. Seventy-five yearling crossbred steers grazed a 65- acre pasture that had been divided into 27 paddocks using electric fencing from May 4, 1995 to September 14, 1995. During this period, the 65-acre pasture system produced 9,975 animal-days of grazing and 11,403 pounds of gain. On a per-acre basis, this translates to 153.5 animal-days of grazing and 175.4 pounds of gain. The stocking rate was constant for the entire 133- day grazing season at 1.15 steers per acre. On May 4, 1995, the beginning of the grazing season, the average weight of the steers was 495.7 pounds. By the end of the grazing trial on September 14, 1995, the average weight of the steers had increased to 647.7 pounds. The average gain per steer during the 133-day grazing period was 152 pounds, and the average daily gain per steer was 1.14 pounds. The average bodyweight of the steers during the entire grazing season was 571.7 pounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two rotational-grazing systems, a 13-paddock and a 4-paddock, have been demonstrated on CRP land near Corning, Iowa since 1991 and this report summarizes the 2001 production data. Establishment of this project was to show economically feasible grass alternatives to row crops and CRP for steeply sloping (9% - 14% slope), highly-erodible land (HEL). Stocking rates were 1.57 and 1.72 acres per pair on the 13- and 4-paddock systems, respectively. In a 119 day grazing season calves gained 2.23 and 2.27 lbs/day for the 13- and 4-paddock systems, while cows gained 51.4 and 113.4 lbs, respectively. While some system hay growth was utilized to stave off drought conditions, there was a net hay gain of 11 and 5.5 bales of hay for the 13- and 4-paddock systems, respectively

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A steer grazing demonstration was conducted in 2001 at the CRP Research and Demonstration Project farm near Corning, Iowa. Ninety-five steers were delivered to the Adams County CRP farm on April 27, 2001. The steer pasture at the CRP farm was 76 acres, divided into 33 paddocks with electric fence. Cattle were moved 101 times to a fresh paddock during the grazing season. Most of the moves (79.2%) followed 1 day of grazing in a paddock. No paddock was grazed for more than 3 days in succession. Rate of gain on pasture (2.12 lbs./animal/day) was higher in 2001 than in any previous year in the 8-year steer grazing project at the CRP farm. The 95 steers gained a total of 21,056 pounds on pasture, and the cost of the gain on pasture was $51.30/cwt. The 2001 steer grazing project showed a small profit above all costs. The net profit was $4.12/steer or $5.15/acre. Large profits and large losses are possible, primarily depending on the difference between the buying and selling prices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two grazing systems were demonstrated on Conservation Reserve Program (CRP) land in southwestern Iowa near Corning in the summers of 1991, 1992, 1993, 1994, and 1995. This report summarizes the 1995 data and compares them to results from the four previous years. The systems, a 13-paddock intensive-rotational grazing system and a 4-paddock more traditional rotation, both established in 1991, are aimed at showing economically sustainable grass alternatives for steeply sloping (9-14% slope), highly erodible land (HEL) once the 10-year CRP ends. In a 147-day grazing season in 1995, nursing crossbred calves with no creep gained 2.36 pounds and 2.38 pounds per day on the 13- and 4-paddock systems, respectively. The rotations were stocked at 1.65 acres per cow-calf pair on the 13-paddock system and 1.72 acres per pair on the 4-paddock system. This produced 210.2 pounds of calf gain per acre on the 13-paddock system and 203.2 pounds of calf gain per acre on the 4- paddock system.. Similar calves gained 2.37 pounds and 2.50 pounds per day for 155 days, yielding a total gain per acre of 222.7 pounds on the 13-paddock system and 224.9 pounds on the 4-paddock system in 1994. Results for 1992 remain the highest from both systems in the five years of grazing, with calf gain per head per day at 2.45 for 155 days netting 241.9 pounds per acre on the 13- paddock system and calf gain per head per day at 2.38 for 154 days on the 4-paddock system yielding 263.6 pounds per acre. Cows maintained both their weight and condition scores in both systems again in 1995. A third system, the 18-paddock intensive-rotational grazing system, was stocked with stocker steers in 1995, and the results are reported in a second article in the 1996 ISU Beef Research Report entitled “Intensive- Rotational Grazing Steers on Highly Erodible Land at the Adams County CRP Project.” Concerning grazing management, paddocks were grazed four, five, or six times in the 13-paddock intensive- rotational grazing system during the 147-day grazing season of 1995. This number of times grazed per paddock was nearly equal to times grazed per paddock in 1994. However, several paddocks were subdivided temporarily to equalize paddock size and increase grazing uniformity. This increased the total number of cattle moves in the 13-paddock system from 78 in 1994 to 109 in 1995. The average length of stay on each paddock or subdivision of a paddock per grazing time was 1 to 2.2 days. This was less than in any of the other four grazing years in this project. The principle of not grazing more than half the standing forage during any one grazing period was closely followed in 1995. All paddocks in the 13-paddock system were also rested approximately the recommended 30 days between each grazing cycle in 1995.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animal production, hay production and feeding, and the yields and composition of forage from summer and winter grass-legume pastures and winter corn crop residue fields from a year-round grazing system were compared with those of a conventional system. The year-round grazing system utilized 1.67 acres of smooth bromegrass-orchardgrass-birdsfoot trefoil pasture per cow in the summer, and 1.25 acres of stockpiled tall fescue-red clover pasture per cow, 1.25 acres of stockpiled smooth bromegrass-red clover pasture per cow, and 1.25 acres of corn crop residues per cow during winter for spring- and fall-calving cows and stockers. First-cutting hay was harvested from the tall fescue-red clover and smooth bromegrass-red clover pastures to meet supplemental needs of cows and calves during winter. In the conventional system (called the minimal land system), spring-calving cows grazed smooth bromegrass-orchardgrass-birdsfoot trefoil pastures at 3.33 acres/cow during summer with first cutting hay removed from one-half of these acres. This hay was fed to these cows in a drylot during winter. All summer grazing was done by rotational stocking for both systems, and winter grazing of the corn crop residues and stockpiled forages for pregnant spring-calving cows and lactating fall-calving cows in the year-round system was managed by strip-stocking. Hay was fed to springcalving cows in both systems to maintain a mean body condition score of 5 on a 9-point scale, but was fed to fall-calving cows to maintain a mean body condition score of greater than 3. Over winter, fall-calving cows lost more body weight and condition than spring calving cows, but there were no differences in body weight or condition score change between spring-calving cows in either system. Fall- and spring-calving cows in the yearround grazing system required 934 and 1,395 lb. hay dry matter/cow for maintenance during the winter whereas spring-calving cows in drylot required 4,776 lb. hay dry matter/cow. Rebreeding rates were not affected by management system. Average daily gains of spring-born calves did not differ between systems, but were greater than fall calves. Because of differences in land areas for the two systems, weight production of calves per acre of cows in the minimal land system was greater than those of the year-round grazing system, but when the additional weight gains of the stocker cattle were considered, production of total growing animals did not differ between the two systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A year-round grazing system for spring- and fall-calving cows was developed to compare animal production and performance, hay production and feeding, winter forage composition changes, and summer pasture yield and nutrient composition to that from a conventional, or minimal land system. Systems compared forage from smooth bromegrass-orchardgrass-birdsfoot trefoil pastures for both systems in the summer and corn crop residues and stockpiled grass-legume pastures for the year-round system to drylot hay feeding during winter for the minimal land system. The year-round grazing system utilized 1.67 acres of smooth bromegrassorchardgrass- birdsfoot trefoil (SB-O-T) pasture per cow in the summer, compared with 3.33 acres of (SB-O-T) pasture per cow in the control (minimal land) system. In addition to SB-O-T pastures, the year-round grazing system utilized 2.5 acres of tall fescue-red clover (TFRC) and 2.5 acres of smooth bromegrass-red clover (SBRC) per cow for grazing in both mid-summer and winter for fall- and spring-calving cows, respectively. First-cutting hay was harvested from the TF-RC and SB-RC pastures, and regrowth was grazed for approximately 45 days in the summer. These pastures were then fertilized with 40 lbs N/acre and stockpiled for winter grazing. Also utilized during the winter for spring-calving cows in the year-round grazing system were corn crop residue (CCR) pastures at an allowance of 2.5 acres per cow. In the minimal land system, hay was harvested from three-fourths of the area in SB-O-T pastures and stored for feeding in a drylot through the winter. Summer grazing was managed with rotational stocking for both systems, and winter grazing of stockpiled forages and corn crop residues by year-round system cows was managed by strip-stocking. Hay was fed to maintain a body condition score of 5 on a 9 point scale for spring-calving cows in both systems. Hay was supplemented as needed to maintain a body condition score of 3 for fall-calving cows nursing calves through the winter. Although initial condition scores for cows in both systems were different at the initiation of grazing for both winter and summer, there were no significant differences (P > .05) in overall condition score changes throughout both grazing seasons. In year 1, fall-calving cows in the year-round grazing system lost more (P < .05) body weight during winter than spring-calving cows in either system. In year 2, there were no differences seen in weight changes over winter for any group of cows. Average daily gains of fall calves in the yearround system were 1.9 lbs/day compared with weight gains of 2.5 lbs/day for spring calves from both systems. Yearly growing animal production from pastures for both years did not differ between systems when weight gains of stockers that grazed summer pastures in the year-round grazing system were added to weight gains of suckling calves. Carcass characteristics for all calves finished in the feedlot for both systems were similar. There were no significant differences in hay production between systems for year 1; however, amounts of hay needed to maintain cows were 923, 1373, 4732 lbs dry matter/cow for year-round fall-calving, year-round spring-calving, and minimal land spring-calving cows, respectively. In year 2, hay production per acre in the minimal land system was greater (P < .05) than for the year-round system, but the amounts of hay required per cow were 0, 0, and 4720 lbs dry matter/cow for yearround fall-calving, year-round spring-calving, and minimal land spring-calving cows, respectively.