20 resultados para diversified grazing ecosystems
Resumo:
A comparison was made between two different summer grazing systems. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass--orchardgrass--birdsfoot trefoil pastures and winter stockpiles pastures with cowcalf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass--orchardgrass-- birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures and one fourth of the allocated summer pastures. Cow-calf pairs grazing in the year-round system utilized on fourth of the winter stockpile pastures due to lack of forage, whereas cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer. Grazing system did not affect cow body weight, condition score, or daily calf weight gain. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level.
Resumo:
The winter component of a year-round grazing system involving grazing of corn crop residues followed by grazing stockpiled grass-legume forages was compared at the McNay Research Farm with that of the winter component of a minimal land system that maintained cows in drylot. In the summers of 1995 and 1996, two and one cuttings of hay per year were harvested from two 15-acre fields containing “Johnston” low endophtye tall fescue and red clover. Two cuttings of hay in 1995 and one cutting in 1996 were harvested from two 15-acre fields of smooth bromegrass and red clover. Hay yields were 4,236 and 4,600 pounds of dry matter per acre for the tall fescue-red clover in 1995 and 1996, and 2,239 and 2,300 pounds of dry matter per acre for the smooth bromegrass-red clover in 1995 and 1996. Following grain harvest, four 7.5-acre fields containing corn crop residues were stocked with cows at midgestation at an allowance of 1.5 acres per cow. Forage yields at the initiation of corn crop grazing in 1995 and 1996 were 3,757 and 3,551 pounds of dry matter per acre for corn crop residues. Stockpiled forage yields were 1,748 and 2,912 pounds of dry matter for tall fescue-red clover and 1,880 and 2,187 pounds for smooth bromegrass-red clover. Corn crop residues and stockpiled forages were grazed in a strip stocking system. For comparison, 20 cows in 1995 and 16 cows in 1996 were placed in two drylots simultaneously with initiation of corn crop grazing, where they remained throughout the winter and spring grazing periods. Cows maintained in drylots or grazing corn crop residue and stockpiled forages were supplemented with hay as large round bales to maintain a body condition score of five. In both years, no seasonal differences in body weight and body condition score were observed between grazing cows or cows maintained in drylots, but grazing cows required 85% and 98% less harvested hay in years 1 and 2 than cows in drylot during the winter and spring. Because less hay was needed to maintain grazing cows, excesses of 12,354 and 5,244 pounds of hay dry matter per cow in 1995 and 1996 remained in the year-round grazing system. During corn crop grazing, organic matter yield decreased at 23.5 and 28.8 pounds of organic matter per day from grazed areas of corn crop residues in 1995 and 1996. Organic matter losses due to weathering were 6.8, 10.3, and 12.7 pounds per day in corn crop residue, tall fescue-red clover and smooth bromegrass-red clover in 1995 and 12.1, 10.7, and 12.1 in 1996. Organic matter losses from grazed and ungrazed areas of tall fescue-red clover and smooth bromegrass-red clover during stockpiled grazing were 6.9, 6.9, and 2.1, 2.9 in 1995 and 13.4, 4.3, and +6.9, 4.4 pounds per day in 1996.
Resumo:
A comparison was made between two different summer grazing systems at the McNay Research Farm. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil pastures and winter stockpile pastures with cow-calf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures in 1996 (Yr. 1) and all the pasture in 1997 (Yr. 2). One hay removal occurred on one fourth of the allocated summer pastures in Year 1 and one half of the pastures in Year 2. In Year one, cow-calf pairs grazing in the year-round system utilized one fourth of the winter stockpile pastures due to a lack of forage on the summer pastures, whereas in Year 2 cowcalf pairs grazed winter stockpile pastures to remove forage as a second cutting of hay. Cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer of Year 1 due to lack of grazable forage; in Year 2, no supplementation was needed. Grazing system did not affect cow body weight, condition score, or daily calf gain in either year. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level in Year 1 and Year 2. The year-round system also produced more net winter forage than did the minimal land system in Year 1. Differences in forage yield and quality were only observed between winter stockpile forages of tall fescue-red clover and smooth bromegrass-red clover and summer pastures during the months of June, July, and August.
Resumo:
The winter component of a year-round grazing system involving grazing of corn crop residues followed by grazing stockpiled grass legume forages was compared at the McNay Research Farm with that of the winter component of a minimal land system that maintained cows in drylot,. In the summer of 1995, two cuttings of hay were harvested from two 15-acre fields containing “Johnston” endophyte-free tall fescue and red clover, and two cuttings of hay were taken from two 15-acre fields of smooth bromegrass and red clover. Hay yields were 4,236 and 4,600 pounds of dry matter per acre for the tall fescue--red clover and smooth bromegrass--red clover. Following grain harvest four 7.5-acre fields containing corn crop residue were stocked with cows at midgestation at an allowance of 1.5 acres per cow. Forage yields at the initiation of corn crop grazing were 3,766pounds of dry matter per acre for corn crop residue, 1,748 pounds for tall fescue--red clover, and 1,.880 pounds for smooth bromegrass--red clover. Corn crop residues and stockpiled forages were grazed in a strip stocking system. For comparison, 20 cows were placed in two drylots simultaneously to the initiation of corn crop grazing where they remained throughout the winter and spring grazing seasons. Cows maintained in drylot or grazing corn crop residue and stockpiled forages were supplemented with hay as large round bales to maintain a body condition score of five. No seasonal differences in body weight and body condition were observed between grazing cows or cows maintained in drylot, but grazing cows required 87% and 84% less harvested hay than cows in drylot during the winter and spring respectively. Because less hay was needed to maintain grazing cows, an excess of 11,905 and 12,803 pounds of hay dry matter per cow remained in the year-round grazing system. During corn crop grazing, organic matter yield decreased at 27.3 pounds of organic matter per day from grazed areas of corn crop residue. Organic matter losses due to weathering were 9.4, 12.9, and 15.8 pounds per day in corn crop residue, tall fescue-red clover and smooth bromegrass-red clover. Organic matter losses from grazed and ungrazed areas during stockpiled grazing were 7.3 and 6.9 for tall fescue--red clover and 2.1, 2.9 for smooth bromegrass--red clover.
Resumo:
Biochar is a carbon-rich material that is similar to charcoal. It is produced when biomass is burned in the absence of oxygen, a process otherwise known as pyrolysis. Pyrolysis and the production of biochar are currently being promoted as a means to both produce domestic fuel (bio-oil) while concurrently producing a co-product that increases crop yield and sequesters carbon in the soil (biochar). While there may be many potential benefits in the application of biochar to agricultural soils, such as enhanced soil fertility and improved soil water status, there are no studies of higher-order ecological and ecosystem effects of biochar and its potential synergistic interactions (either positive or negative) on complex perennial systems. The goal of this field experiment is to determine how biochar and manure addition directly affect ecosystem structure and function in perennial systems, specifically soil nutrients, water, plants, and soil organisms.