45 resultados para Corn rootworm
Resumo:
Corn steep liquor is a liquid by-product containing condensed steep water and condensed distillers solubles from a wet corn milling plant. Finishing steers weighing nine hundred and seventy-five pounds were fed cornbased finishing diets containing 0%, 6%, or 12% corn steep liquor for 84 days. Feeding corn steep liquor did not affect performance of the steers or carcass characteristics. Based on value of feeds replaced in the diet, steep liquor had a value of $55 to $60/ton (50% dry matter) when used to replace corn and supplemental protein in a corn-based finishing diet.
Resumo:
For 126 days, 850 lb. steers were fed diets of corn, corn silage, and ground hay containing either 0%, 4%, or 8% wet distillers solubles obtained from an Iowa dry mill ethanol plant. Addition of distillers solubles resulted in a linear decrease in feed consumption. Gains were increased 3.2% and decreased 6.4% by feeding 4% and 8% distillers solubles, respectively. Compared to the control diet, feed required per pound of gain was reduced 5% by low levels of distillers solubles and 1.5% by high levels. Feeding distillers solubles had no effect on carcass measurements. It was concluded that wet distillers solubles has value as a feed for cattle and can replace a portion of corn grain and supplemental nitrogen in a corn-based finishing diet for beef cattle. The decreased performance of steers fed the 8% level suggests that there might be a maximum amount of wet distiller solubles that can be fed to finishing cattle.
Resumo:
White corn was compared with yellow corn in a 180-day finishing trial with 600 lb. Angus steers fed 90% concentrate diets. Steers fed yellow corn consumed 3.3% less feed and were 3.8% more efficient in feed utilization. Rate of gain and carcass characteristics were similar for steers fed white or yellow corn. The color of subcutaneous fat over the ribs was significantly whiter from carcasses of steers fed white corn compared with those fed yellow corn. The results of this study indicate that white corn may be used instead of barley to produce whiter fat in beef carcasses.
Resumo:
The floods of 1993 caused the corn crop to be low in test weight. The following study was conducted to determine the relative feeding value of low test weight corn. The ability to feed this discounted corn to lambs could be a means of adding extra value to the discounted crop and lower the cost of lamb gain. Performance parameters indicated that low test weight corn was of equal value to normal test weight corn.
Resumo:
One non bt-corn hybrid (Pioneer 3489) and three btcorn hyrids (Pioneer 34RO7, Novartis NX6236, and Novartis N64-Z4) were planted in replicated 7.1-acre fields. After grain harvest, fields were stocked with 3 mature cows in midgestation to be strip-grazed as four paddocks over 126 days. Six similar cows were allotted to replicated drylots. All cows were fed hay as necessary to maintain a condition score of 5 on a 9-point scale. Cows were condition-scored biweekly and weighed monthly. Forage yield and weathering losses were determined by sampling one 4-m2 location per grazed or ungrazed paddock in each field with a minimum total of 2 locations of grazed or ungrazed forage per field. To measure forage selection during grazing, samples of grazed forage were collected from the rumen of one fistulated steer that grazed for 2 hours after ruminal evacuation. Non-bt-corn hybrids had greater (P<.05) infestation of corn borers in the upper stalk, lower stalk and ear shank than bt-corn hybrids. However, there were no differences in grain yields or dropped grain between hybrids. Crop residue dry matter, organic matter and in vitro digestible dry matter yields at the initiation of grazing did not differ between corn hybrids. Dry matter, organic matter and in vitro digestible dry matter losses tended (P<.10) to be greater from the NX6236 and N64-Z4 hybrids than from the 3489 and 34RO7 hybrids and were greater (P<.05) from grazed than non-grazed areas of the fields. At the initiation of grazing, dry matter concentrations of the crop residues from the NX6236 and N64-Z4 hybrids tended to be lower than those from the 3489 and 34RO7 hybrids. Crop residues from the NX6236 and N64-74 hybrids had lower concentrations of acid detergent fiber (P<.05) and acid detergent lignin (P=.07) and higher concentrations of in vitro digestible organic matter than the 3489 and 34RO7 hybrids. Over the grazing season, corn hybrid did not affect mean rates of change in forage composition. The concentration of in vitro digestible organic matter in forage selected by steers after two weeks of grazing did not differ. However, steers grazing corn crop residues consumed forage with higher (P<.05) concentrations of neutral detergent fiber, acid detergent fiber, and acid detergent insoluble nitrogen than steers fed hay. The acid detergent fiber concentration of forage selected by steers grazing the 3489 and N64-Z4 hybrids was lower (P < .05) than concentrations from the 34RO7 and NX6236 hybrids. In order to maintain similar body condition score changes, cows grazing crop residues from the 3489, 34RO7, NX6236, and N64-Z4 hybrids required 650, 628, 625, and 541 kg hay DM/cow compared with a hay requirement of 1447 kg hay DM/cow for cows maintained in a drylot.
Resumo:
In the fall of 1994, mature Charolais cross cows in midgestation were allotted to duplicate 15 acre fields containing corn crop residues or a 2-to-1 mixture of corn crop residues and berseem clover planted in 3 strips at an allowance of 2.5 acres/cow for a 140 day wintering season. Similar cows were allotted duplicate drylots. All cows were fed hay as necessary to maintain a body condition score of 5. Cows grazing corn crop residues with or without berseem clover required 2596 pounds less hay per cow than cows maintained in a drylot. There was no difference in the amounts of hay required by cows grazing corn crop residues alone or with berseem clover. Initial organic matter yield of berseem clover was nearly that of corn crop residues and did not decrease as rapidly as corn crop residues. Berseem clover had a higher organic matter digestibility than corn crop residues at the initiation of grazing. Organic matter digestibility of berseem clover, however, decreased more rapidly than corn crop residues because of weathering during the winter.
Resumo:
Plant-parasitic nematodes are microscopic worms that feed on plants. Almost every nematode that feeds on corn is capable of feeding on many other plants. These nematode parasites are thought to be native to most Iowa soils and to have fed upon native plants before corn was grown as a cultivated crop. Population densities (numbers) of most species of plant-parasitic nematodes that feed on corn have to increase to damaging levels (called damage thresholds) before yield loss occurs.
Resumo:
This project is designed to study the N fertilization needs in continuous corn (CC) and corn rotated with soybean (SC) as influenced by location and climate. Multiple rates of fertilizer N are spring applied, with the intent to measure yield response to N within each rotation on a yearly basis for multiple years at multiple sites across Iowa. This will allow the determination of N requirements for each rotation, differences that exist between the two rotations, responses to applied N across different soils and climatic conditions, and evaluation of tools used to adjust N application.
Resumo:
The purpose of this study was to evaluate various herbicides for corn injury and weed control when applied preemergence and postemergence.
Resumo:
The purpose of this study was to evaluate various herbicides for corn injury and weed control when applied preemergence and postemergence.
Resumo:
No-till minimizes the incorporation of crop residue and fertilizer with soil; resulting in wetter, colder soils and the accumulation of organic matter, phosphorus (P), and potassium (K) near the soil surface. Banding of P and Kcould be more effective than broadcast fertilization by counteracting stratification, applying nutrients in the root zone (starter effect), and minimizing reactions with the soil that may reduce their availability to plants. Therefore, a long-term study was established in 1994 to evaluate P and K fertilizer rates and placement methods for grain yield of corn and soybean managed with no-till and chiselplow/disk tillage.
Resumo:
Corn is planted earlier each year, which is one important component in maximizing grain yield. Earlier planting dates can be attributed to larger farms, less spring tillage, improvements in corn hybrids, improved drainage systems, and better seed treatments. Research conducted at the ISU Northwest Research Farm from 2006 through 2009 showed that the planting window for 98 percent or greater yield potential in northwest Iowa is April 15 to May 9. A 95 percent or greater yield potential can be realized from April 15 to May 18. A study was conducted from 2009 through 2011 at the Northwest Research Farm to determine how corn planted in early April compares with corn planted in the recommended planting window for the area.
Resumo:
Objectives of this project were to study corn nitrogen (N) fertilization requirement and corn-soybean yield response when grown in a rye cover cropping system. Multiple rates of N fertilizer were applied, with measurement of corn yield response to applied N and soybean yield with and without a fall planted winter rye cover crop. The study was conducted at multiple research farms, with the intent for comparison of with and without a cover crop system across varying soil and climatic conditions in Iowa.
Resumo:
Fungicides were rarely used on hybrid corn prior to 2007, however, in the past few years, some farmers have included fungicides in their common crop production, particularly as the value of grain has increased. Fungicides are recommended for foliar disease management to protect yield potential. There also have been reports of increased yields in the absence of disease. A number of fungicides are registered for use on corn. The objectives of this project were to evaluate the yield response of hybrid corn to foliar fungicide application at various timings.
Resumo:
Plant-parasitic nematodes are microscopic worms that feed on plants. Almost every nematode that feeds on corn is capable of feeding on many other plants. These nematode parasites are thought to be native to most Iowa soils and to have fed upon native plants before corn was grown as a cultivated crop. Population densities (numbers) of most species of plant-parasitic nematodes that feed on corn have to increase to damaging levels (called damage thresholds) before yield loss occurs.