5 resultados para virtual simulation
em Digital Peer Publishing
Resumo:
SPatch is an open source virtual laboratory designed to perform simulated electrophysiological experiments without the technical difficulties inherent to laboratory work. It provides the core equipment necessary for recording neuronal activity and allows the user to install the equipment, design their own protocols, prepare solutions to bathe the preparation or to fill the electrodes, and gather data. Assistance is provided for most steps with predefined components that are appropriate to a range of standard procedures. Experiments that can be performed with SPatch at present concern the study of voltage-gated channels in isolated neurons. This allows understanding the ionic mechanisms of Na+ and Ca2+ action potentials, after spike hyperpolarization, pacemaker tonic or bursting activity of neurons, delayed or sustained or adaptive firing of neurons in response to a depolarization, spontaneous depolarization of the membrane following an hyperpolarization, etc. In an educational context, the main interest of SPatch is to allow students to focus on the concepts and thought processes of electrophysiological investigation without the high equipment costs and extensive training required to perform laboratory work. It can be used to acquaint students with the relevant procedures before starting work in a real lab, or to give students an understanding of single neuron behavior and the ways it can be studied without requiring practical work. We illustrate the function and use of SPatch, explore educational issues arising from the inevitable differences between simulated and real laboratory work, and outline possible improvements.
Resumo:
The article presents the design process of intelligent virtual human patients that are used for the enhancement of clinical skills. The description covers the development from conceptualization and character creation to technical components and the application in clinical research and training. The aim is to create believable social interactions with virtual agents that help the clinician to develop skills in symptom and ability assessment, diagnosis, interview techniques and interpersonal communication. The virtual patient fulfills the requirements of a standardized patient producing consistent, reliable and valid interactions in portraying symptoms and behaviour related to a specific clinical condition.
Resumo:
Virtual environments (VE) are gaining in popularity and are increasingly used for teamwork training purposes, e.g., for medical teams. One shortcoming of modern VEs is that nonverbal communication channels, essential for teamwork, are not supported well. We address this issue by using an inexpensive webcam to track the user's head. This tracking information is used to control the head movement of the user's avatar, thereby conveying head gestures and adding a nonverbal communication channel. We conducted a user study investigating the influence of head tracking based avatar control on the perceived realism of the VE and on the performance of a surgical teamwork training scenario. Our results show that head tracking positively influences the perceived realism of the VE and the communication, but has no major influence on the training outcome.
Resumo:
Non-verbal communication (NVC) is considered to represent more than 90 percent of everyday communication. In virtual world, this important aspect of interaction between virtual humans (VH) is strongly neglected. This paper presents a user-test study to demonstrate the impact of automatically generated graphics-based NVC expression on the dialog quality: first, we wanted to compare impassive and emotion facial expression simulation for impact on the chatting. Second, we wanted to see whether people like chatting within a 3D graphical environment. Our model only proposes facial expressions and head movements induced from spontaneous chatting between VHs. Only subtle facial expressions are being used as nonverbal cues - i.e. related to the emotional model. Motion capture animations related to hand gestures, such as cleaning glasses, were randomly used to make the virtual human lively. After briefly introducing the technical architecture of the 3D-chatting system, we focus on two aspects of chatting through VHs. First, what is the influence of facial expressions that are induced from text dialog? For this purpose, we exploited an emotion engine extracting an emotional content from a text and depicting it into a virtual character developed previously [GAS11]. Second, as our goal was not addressing automatic generation of text, we compared the impact of nonverbal cues in conversation with a chatbot or with a human operator with a wizard of oz approach. Among main results, the within group study -involving 40 subjects- suggests that subtle facial expressions impact significantly not only on the quality of experience but also on dialog understanding.
Resumo:
Wind and warmth sensations proved to be able to enhance users' state of presence in Virtual Reality applications. Still, only few projects deal with their detailed effect on the user and general ways of implementing such stimuli. This work tries to fill this gap: After analyzing requirements for hardware and software concerning wind and warmth simulations, a hardware and also a software setup for the application in a CAVE environment is proposed. The setup is evaluated with regard to technical details and requirements, but also - in the form of a pilot study - in view of user experience and presence. Our setup proved to comply with the requirements and leads to satisfactory results. To our knowledge, the low cost simulation system (approx. 2200 Euro) presented here is one of the most extensive, most flexible and best evaluated systems for creating wind and warmth stimuli in CAVE-based VR applications.