5 resultados para travel time estimation
em Digital Peer Publishing
Resumo:
Integrated choice and latent variable (ICLV) models represent a promising new class of models which merge classic choice models with the structural equation approach (SEM) for latent variables. Despite their conceptual appeal, applications of ICLV models in marketing remain rare. We extend previous ICLV applications by first estimating a multinomial choice model and, second, by estimating hierarchical relations between latent variables. An empirical study on travel mode choice clearly demonstrates the value of ICLV models to enhance the understanding of choice processes. In addition to the usually studied directly observable variables such as travel time, we show how abstract motivations such as power and hedonism as well as attitudes such as a desire for flexibility impact on travel mode choice. Furthermore, we show that it is possible to estimate such a complex ICLV model with the widely available structural equation modeling package Mplus. This finding is likely to encourage more widespread application of this appealing model class in the marketing field.
Resumo:
Geometrical dependencies are being researched for analytical representation of the probability density function (pdf) for the travel time between a random, and a known or another random point in Tchebyshev’s metric. In the most popular case - a rectangular area of service - the pdf of this random variable depends directly on the position of the server. Two approaches have been introduced for the exact analytical calculation of the pdf: Ad-hoc approach – useful for a ‘manual’ solving of a specific case; by superposition – an algorithmic approach for the general case. The main concept of each approach is explained, and a short comparison is done to prove the faithfulness.
Resumo:
Spatial tracking is one of the most challenging and important parts of Mixed Reality environments. Many applications, especially in the domain of Augmented Reality, rely on the fusion of several tracking systems in order to optimize the overall performance. While the topic of spatial tracking sensor fusion has already seen considerable interest, most results only deal with the integration of carefully arranged setups as opposed to dynamic sensor fusion setups. A crucial prerequisite for correct sensor fusion is the temporal alignment of the tracking data from several sensors. Tracking sensors are typically encountered in Mixed Reality applications, are generally not synchronized. We present a general method to calibrate the temporal offset between different sensors by the Time Delay Estimation method which can be used to perform on-line temporal calibration. By applying Time Delay Estimation on the tracking data, we show that the temporal offset between generic Mixed Reality spatial tracking sensors can be calibrated. To show the correctness and the feasibility of this approach, we have examined different variations of our method and evaluated various combinations of tracking sensors. We furthermore integrated this time synchronization method into our UBITRACK Mixed Reality tracking framework to provide facilities for calibration and real-time data alignment.
Resumo:
In this paper we present a hybrid method to track human motions in real-time. With simplified marker sets and monocular video input, the strength of both marker-based and marker-free motion capturing are utilized: A cumbersome marker calibration is avoided while the robustness of the marker-free tracking is enhanced by referencing the tracked marker positions. An improved inverse kinematics solver is employed for real-time pose estimation. A computer-visionbased approach is applied to refine the pose estimation and reduce the ambiguity of the inverse kinematics solutions. We use this hybrid method to capture typical table tennis upper body movements in a real-time virtual reality application.
Resumo:
The estimation of the average travel distance in a low-level picker-to-part order picking system can be done by analytical methods in most cases. Often a uniform distribution of the access frequency over all bin locations is assumed in the storage system. This only applies if the bin location assignment is done randomly. If the access frequency of the articles is considered in the bin location assignment to reduce the average total travel distance of the picker, the access frequency over the bin locations of one aisle can be approximated by an exponential density function or any similar density function. All known calculation methods assume that the average number of orderlines per order is greater than the number of aisles of the storage system. In case of small orders this assumption is often invalid. This paper shows a new approach for calculating the average total travel distance taking into account that the average number of orderlines per order is lower than the total number of aisles in the storage system and the access frequency over the bin locations of an aisle can be approximated by any density function.