3 resultados para the mind-brain problem
em Digital Peer Publishing
Resumo:
What does it mean for curriculum to be interactive? It encourages student engagement and active participation in both individual and group work. It offers teachers a coherent set of materials to choose from that can enhance their classes. It is the product of on-going development and continuous improvement based on research and feedback from the field. This paper will introduce work in progress from the Center for Excellence in Education, Science, and Technology (CELEST), an NSF Science of Learning Center. Among its many goals, CELEST is developing a unique educational curriculum, an interactive curriculum based upon models of mind and brain. Teachers, administrators, and governments are naturally concerned with how students learn. Students are greatly concerned about how minds work, including how to learn. CELEST aims to introduce curricula that not only meet current U.S. standards in mathematics, science, and psychology but also influence plans to improve those standards. Software and support materials are in development and available at http://cns.bu.edu/celest/private/. Interested parties are invited to contact the author for access.
Resumo:
In manual order picking systems, order pickers walk or drive through a distribution warehouse in order to collect items which are requested by (internal or external) customers. In order to perform these operations efficiently, it is usually required that customer orders are combined into (more substantial) picking orders of limited size. The Order Batching Problem considered in this paper deals with the question of how a given set of customer orders should be combined such that the total length of all tours is minimized which are necessary to collect all items. The authors introduce two metaheuristic approaches for the solution of this problem: the first one is based on Iterated Local Search; the second on Ant Colony Optimization. In a series of extensive numerical experiments, the newly developed approaches are benchmarked against classic solution methods. It is demonstrated that the proposed methods are not only superior to existing methods but provide solutions which may allow distribution warehouses to be operated significantly more efficiently.
Resumo:
The car sequencing problem determines sequences of different car models launched down a mixed-model assembly line. To avoid work overloads of workforce, car sequencing restricts the maximum occurrence of labor-intensive options, e.g., a sunroof, by applying sequencing rules. We consider this problem in a resequencing context, where a given number of buffers (denoted as pull-off tables) is available for rearranging a stirred sequence. The problem is formalized and suited solution procedures are developed. A lower bound and a dominance rule are introduced which both reduce the running time of our graph approach. Finally, a real-world resequencing setting is investigated.