2 resultados para person
em Digital Peer Publishing
Resumo:
This paper proposes a frequency-based explanation of the Ditransitive Person-Role Constraint, a cross-linguistic generalization that can be formulated as follows: "Combinations of bound pronouns with the roles Recipient and Theme are disfavored if the Theme pronoun is first or second person and the Recipient pronoun is third person."
Resumo:
Imitation learning is a promising approach for generating life-like behaviors of virtual humans and humanoid robots. So far, however, imitation learning has been mostly restricted to single agent settings where observed motions are adapted to new environment conditions but not to the dynamic behavior of interaction partners. In this paper, we introduce a new imitation learning approach that is based on the simultaneous motion capture of two human interaction partners. From the observed interactions, low-dimensional motion models are extracted and a mapping between these motion models is learned. This interaction model allows the real-time generation of agent behaviors that are responsive to the body movements of an interaction partner. The interaction model can be applied both to the animation of virtual characters as well as to the behavior generation for humanoid robots.