2 resultados para observatory of industrial activities

em Digital Peer Publishing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a model-based approach for real-time camera pose estimation in industrial scenarios. The line model which is used for tracking is generated by rendering a polygonal model and extracting contours out of the rendered scene. By un-projecting a point on the contour with the depth value stored in the z-buffer, the 3D coordinates of the contour can be calculated. For establishing 2D/3D correspondences the 3D control points on the contour are projected into the image and a perpendicular search for gradient maxima for every point on the contour is performed. Multiple hypotheses of 2D image points corresponding to a 3D control point make the pose estimation robust against ambiguous edges in the image.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Person-to-stock order picking is highly flexible and requires minimal investment costs in comparison to automated picking solutions. For these reasons, tradi-tional picking is widespread in distribution and production logistics. Due to its typically large proportion of manual activities, picking causes the highest operative personnel costs of all intralogistics process. The required personnel capacity in picking varies short- and mid-term due to capacity requirement fluctuations. These dynamics are often balanced by employing minimal permanent staff and using seasonal help when needed. The resulting high personnel fluctuation necessitates the frequent training of new pickers, which, in combination with in-creasingly complex work contents, highlights the im-portance of learning processes in picking. In industrial settings, learning is often quantified based on diminishing processing time and cost requirements with increasing experience. The best-known industrial learning curve models include those from Wright, de Jong, Baloff and Crossman, which are typically applied to the learning effects of an entire work crew rather than of individuals. These models have been validated in largely static work environments with homogeneous work contents. Little is known of learning effects in picking systems. Here, work contents are heterogeneous and individual work strategies vary among employees. A mix of temporary and steady employees with varying degrees of experience necessitates the observation of individual learning curves. In this paper, the individual picking performance development of temporary employees is analyzed and compared to that of steady employees in the same working environment.