1 resultado para normalization constant
em Digital Peer Publishing
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archive of European Integration (6)
- Aston University Research Archive (16)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (244)
- Bibloteca do Senado Federal do Brasil (1)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (36)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CentAUR: Central Archive University of Reading - UK (16)
- Cochin University of Science & Technology (CUSAT), India (6)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (24)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (4)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (7)
- Duke University (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (106)
- Glasgow Theses Service (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (7)
- Nottingham eTheses (1)
- Open Access Repository of Indian Theses (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (12)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (58)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (69)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (11)
- Sistema UNA-SUS (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (12)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (1)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (90)
- Université de Montréal (3)
- Université de Montréal, Canada (6)
- University of Connecticut - USA (3)
- University of Michigan (39)
- University of Queensland eSpace - Australia (121)
Resumo:
Methods for optical motion capture often require timeconsuming manual processing before the data can be used for subsequent tasks such as retargeting or character animation. These processing steps restrict the applicability of motion capturing especially for dynamic VR-environments with real time requirements. To solve these problems, we present two additional, fast and automatic processing stages based on our motion capture pipeline presented in [HSK05]. A normalization step aligns the recorded coordinate systems with the skeleton structure to yield a common and intuitive data basis across different recording sessions. A second step computes a parameterization based on automatically extracted main movement axes to generate a compact motion description. Our method does not restrict the placement of marker bodies nor the recording setup, and only requires a short calibration phase.