4 resultados para multisensory perception
em Digital Peer Publishing
Resumo:
In this article, it is shown that IWD incorporates topological perceptual characteristics of both spoken and written language, and it is argued that these characteristics should not be ignored or given up when synchronous textual CMC is technologically developed and upgraded.
Resumo:
Complementary to automatic extraction processes, Virtual Reality technologies provide an adequate framework to integrate human perception in the exploration of large data sets. In such multisensory system, thanks to intuitive interactions, a user can take advantage of all his perceptual abilities in the exploration task. In this context the haptic perception, coupled to visual rendering, has been investigated for the last two decades, with significant achievements. In this paper, we present a survey related to exploitation of the haptic feedback in exploration of large data sets. For each haptic technique introduced, we describe its principles and its effectiveness.
Resumo:
Recent evidence suggests that managers establish a positive link between management accounting system (MAS) integration and controllership effectiveness, which is fully mediated by the perceived consistency of financial language. Our paper extends this research by analyzing whether controllers have similar perceptions on MAS design. Testing a series of multi-group structural equation models, we find evidence for a preparer-user perception gap with respect to the mediating impact of a consistent financial language. Our results contribute to the still-ongoing controversial debate on MAS integration by indicating that the effectiveness of MAS design cannot be evaluated solely from an instrumental perspective independent from users’ perceptions.
Resumo:
The characteristics of moving sound sources have strong implications on the listener's distance perception and the estimation of velocity. Modifications of the typical sound emissions as they are currently occurring due to the tendency towards electromobility have an impact on the pedestrian's safety in road traffic. Thus, investigations of the relevant cues for velocity and distance perception of moving sound sources are not only of interest for the psychoacoustic community, but also for several applications, like e.g. virtual reality, noise pollution and safety aspects of road traffic. This article describes a series of psychoacoustic experiments in this field. Dichotic and diotic stimuli of a set of real-life recordings taken from a passing passenger car and a motorcycle were presented to test subjects who in turn were asked to determine the velocity of the object and its minimal distance from the listener. The results of these psychoacoustic experiments show that the estimated velocity is strongly linked to the object's distance. Furthermore, it could be shown that binaural cues contribute significantly to the perception of velocity. In a further experiment, it was shown that - independently of the type of the vehicle - the main parameter for distance determination is the maximum sound pressure level at the listener's position. The article suggests a system architecture for the adequate consideration of moving sound sources in virtual auditory environments. Virtual environments can thus be used to investigate the influence of new vehicle powertrain concepts and the related sound emissions of these vehicles on the pedestrians' ability to estimate the distance and velocity of moving objects.