1 resultado para multi-value
em Digital Peer Publishing
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Archive of European Integration (1)
- Aston University Research Archive (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (66)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (7)
- Biodiversity Heritage Library, United States (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- CentAUR: Central Archive University of Reading - UK (10)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (7)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (98)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Deposito de Dissertacoes e Teses Digitais - Portugal (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (11)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (2)
- Galway Mayo Institute of Technology, Ireland (3)
- Glasgow Theses Service (1)
- Institute of Public Health in Ireland, Ireland (11)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (117)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (4)
- Martin Luther Universitat Halle Wittenberg, Germany (8)
- Massachusetts Institute of Technology (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (2)
- Publishing Network for Geoscientific & Environmental Data (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (49)
- Repositório da Produção Científica e Intelectual da Unicamp (8)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (8)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (10)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (91)
- Scielo Saúde Pública - SP (45)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (13)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad Politécnica de Madrid (3)
- Universidade do Minho (31)
- Universidade dos Açores - Portugal (3)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (202)
- Université de Montréal, Canada (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (94)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
In this paper, we investigate how a multilinear model can be used to represent human motion data. Based on technical modes (referring to degrees of freedom and number of frames) and natural modes that typically appear in the context of a motion capture session (referring to actor, style, and repetition), the motion data is encoded in form of a high-order tensor. This tensor is then reduced by using N-mode singular value decomposition. Our experiments show that the reduced model approximates the original motion better then previously introduced PCA-based approaches. Furthermore, we discuss how the tensor representation may be used as a valuable tool for the synthesis of new motions.