12 resultados para mesh: Tutorial
em Digital Peer Publishing
Resumo:
This tutorial is intended to be a "quick start" to creating simulations with GENESIS. It should give you the tools and enough information to let you quickly begin creating cells and networks with GENESIS, making use of the provided example simulations. Advanced topics are covered by appropriate links to the Advanced Tutorials on Realistic Neural Modeling.
Resumo:
This document corresponds to the tutorial on realistic neural modeling given by David Beeman at WAM-BAMM*05, the first annual meeting of the World Association of Modelers (WAM) Biologically Accurate Modeling Meeting (BAMM) on March 31, 2005 in San Antonio, TX. Part I - Introduction to Realistic Neural Modeling for the Beginner: This is a general overview and introduction to compartmental cell modeling and realistic network simulation for the beginner. Although examples are drawn from GENESIS simulations, the tutorial emphasizes the general modeling approach, rather than the details of using any particular simulator. Part II - Getting Started with Modeling Using GENESIS: This builds upon the background of Part I to describe some details of how this approach is used to construct cell and network simulations in GENESIS. It serves as an introduction and roadmap to the extended hands-on GENESIS Modeling Tutorial.
Resumo:
Almost all regions of the brain receive one or more neuromodulatory inputs, and disrupting these inputs produces deficits in neuronal function. Neuromodulators act through intracellular second messenger pathways to influence the electrical properties of neurons, integration of synaptic inputs, spatio-temporal firing dynamics of neuronal networks, and, ultimately, systems behavior. Second messengers pathways consist of series of bimolecular reactions, enzymatic reactions, and diffusion. Calcium is the second messenger molecule with the most effectors, and thus is highly regulated by buffers, pumps and intracellular stores. Computational modeling provides an innovative, yet practical method to evaluate the spatial extent, time course and interaction among second messenger pathways, and the interaction of second messengers with neuron electrical properties. These processes occur both in compartments where the number of molecules are large enough to describe reactions deterministically (e.g. cell body), and in compartments where the number of molecules is small enough that reactions occur stochastically (e.g. spines). – In this tutorial, I explain how to develop models of second messenger pathways and calcium dynamics. The first part of the tutorial explains the equations used to model bimolecular reactions, enzyme reactions, calcium release channels, calcium pumps and diffusion. The second part explains some of the GENESIS, Kinetikit and Chemesis objects that implement the appropriate equations. In depth explanation of calcium and second messenger models is provided by reviewing code, both in XPP, Chemesis and Kinetikit, that implements simple models of calcium dynamics and second messenger cascades.
Resumo:
In the laboratory of Dr. Dieter Jaeger at Emory University, we use computer simulations to study how the biophysical properties of neurons—including their three-dimensional structure, passive membrane resistance and capacitance, and active membrane conductances generated by ion channels—affect the way that the neurons transfer synaptic inputs into the action potential streams that represent their output. Because our ultimate goal is to understand how neurons process and relay information in a living animal, we try to make our computer simulations as realistic as possible. As such, the computer models reflect the detailed morphology and all of the ion channels known to exist in the particular neuron types being simulated, and the model neurons are tested with synaptic input patterns that are intended to approximate the inputs that real neurons receive in vivo. The purpose of this workshop tutorial was to explain what we mean by ‘in vivo-like’ synaptic input patterns, and how we introduce these input patterns into our computer simulations using the freely available GENESIS software package (http://www.genesis-sim.org/GENESIS). The presentation was divided into four sections: first, an explanation of what we are talking about when we refer to in vivo-like synaptic input patterns
Resumo:
P-GENESIS is an extension to the GENESIS neural simulator that allows users to take advantage of parallel machines to speed up the simulation of their network models or concurrently simulate multiple models. P-GENESIS adds several commands to the GENESIS script language that let a script running on one processor execute remote procedure calls on other processors, and that let a script synchronize its execution with the scripts running on other processors. We present here some brief comments on the mechanisms underlying parallel script execution. We also offer advice on parallelizing parameter searches, partitioning network models, and selecting suitable parallel hardware on which to run P-GENESIS.
Resumo:
Artificial neural networks are based on computational units that resemble basic information processing properties of biological neurons in an abstract and simplified manner. Generally, these formal neurons model an input-output behaviour as it is also often used to characterize biological neurons. The neuron is treated as a black box; spatial extension and temporal dynamics present in biological neurons are most often neglected. Even though artificial neurons are simplified, they can show a variety of input-output relations, depending on the transfer functions they apply. This unit on transfer functions provides an overview of different transfer functions and offers a simulation that visualizes the input-output behaviour of an artificial neuron depending on the specific combination of transfer functions.
Resumo:
This tutorial gives a step by step explanation of how one uses experimental data to construct a biologically realistic multicompartmental model. Special emphasis is given on the many ways that this process can be imprecise. The tutorial is intended for both experimentalists who want to get into computer modeling and for computer scientists who use abstract neural network models but are curious about biological realistic modeling. The tutorial is not dependent on the use of a specific simulation engine, but rather covers the kind of data needed for constructing a model, how they are used, and potential pitfalls in the process.
Resumo:
One of the main roles of the Neural Open Markup Language, NeuroML, is to facilitate cooperation in building, simulating, testing and publishing models of channels, neurons and networks of neurons. MorphML, which was developed as a common format for exchange of neural morphology data, is distributed as part of NeuroML but can be used as a stand-alone application. In this collection of tutorials and workshop summary, we provide an overview of these XML schemas and provide examples of their use in down-stream applications. We also summarize plans for the further development of XML specifications for modeling channels, channel distributions, and network connectivity.
Resumo:
During decades Distance Transforms have proven to be useful for many image processing applications, and more recently, they have started to be used in computer graphics environments. The goal of this paper is to propose a new technique based on Distance Transforms for detecting mesh elements which are close to the objects' external contour (from a given point of view), and using this information for weighting the approximation error which will be tolerated during the mesh simplification process. The obtained results are evaluated in two ways: visually and using an objective metric that measures the geometrical difference between two polygonal meshes.
Resumo:
The IDA model of cognition is a fully integrated artificial cognitive system reaching across the full spectrum of cognition, from low-level perception/action to high-level reasoning. Extensively based on empirical data, it accurately reflects the full range of cognitive processes found in natural cognitive systems. As a source of plausible explanations for very many cognitive processes, the IDA model provides an ideal tool to think with about how minds work. This online tutorial offers a reasonably full account of the IDA conceptual model, including background material. It also provides a high-level account of the underlying computational “mechanisms of mind” that constitute the IDA computational model.
Resumo:
Neurons in Action (NIA1, 2000; NIA1.5, 2004; NIA2, 2007), a set of tutorials and linked simulations, is designed to acquaint students with neuronal physiology through interactive, virtual laboratory experiments. Here we explore the uses of NIA in lecture, both interactive and didactic, as well as in the undergraduate laboratory, in the graduate seminar course, and as an examination tool through homework and problem set assignments. NIA, made with the simulator NEURON (http://www.neuron.yale.edu/neuron/), displays voltages, currents, and conductances in a membrane patch or signals moving within the dendrites, soma and/or axon of a neuron. Customized simulations start with the plain lipid bilayer and progress through equilibrium potentials; currents through single Na and K channels; Na and Ca action potentials; voltage clamp of a patch or a whole neuron; voltage spread and propagation in axons, motoneurons and nerve terminals; synaptic excitation and inhibition; and advanced topics such as channel kinetics and coincidence detection. The user asks and answers "what if" questions by specifying neuronal parameters, ion concentrations, and temperature, and the experimental results are then plotted as conductances, currents, and voltage changes. Such exercises provide immediate confirmation or refutation of the student's ideas to guide their learning. The tutorials are hyperlinked to explanatory information and to original research papers. Although the NIA tutorials were designed as a sequence to empower a student with a working knowledge of fundamental neuronal principles, we find that faculty are using the individual tutorials in a variety of educational situations, some of which are described here. Here we offer ideas to colleagues using interactive software, whether NIA or another tool, for educating students of differing backgrounds in the subject of neurophysiology.
Resumo:
This paper proposes a new compression algorithm for dynamic 3d meshes. In such a sequence of meshes, neighboring vertices have a strong tendency to behave similarly and the degree of dependencies between their locations in two successive frames is very large which can be efficiently exploited using a combination of Predictive and DCT coders (PDCT). Our strategy gathers mesh vertices of similar motions into clusters, establish a local coordinate frame (LCF) for each cluster and encodes frame by frame and each cluster separately. The vertices of each cluster have small variation over a time relative to the LCF. Therefore, the location of each new vertex is well predicted from its location in the previous frame relative to the LCF of its cluster. The difference between the original and the predicted local coordinates are then transformed into frequency domain using DCT. The resulting DCT coefficients are quantized and compressed with entropy coding. The original sequence of meshes can be reconstructed from only a few non-zero DCT coefficients without significant loss in visual quality. Experimental results show that our strategy outperforms or comes close to other coders.