3 resultados para matting
em Digital Peer Publishing
Resumo:
Virtual studio technology plays an important role for modern television productions. Blue-screen matting is a common technique for integrating real actors or moderators into computer generated sceneries. Augmented reality offers the possibility to mix real and virtual in a more general context. This article proposes a new technological approach for combining real studio content with computergenerated information. Digital light projection allows a controlled spatial, temporal, chrominance and luminance modulation of illumination – opening new possibilities for TV studios.
Resumo:
This contribution discusses the effects of camera aperture correction in broadcast video on colour-based keying. The aperture correction is used to ’sharpen’ an image and is one element that distinguishes the ’TV-look’ from ’film-look’. ’If a very high level of sharpening is applied, as is the case in many TV productions then this significantly shifts the colours around object boundaries with hight contrast. This paper discusses these effects and their impact on keying and describes a simple low-pass filter to compensate for them. Tests with colour-based segmentation algorithms show that the proposed compensation is an effective way of decreasing the keying artefacts on object boundaries.
Resumo:
We present an algorithm for estimating dense image correspondences. Our versatile approach lends itself to various tasks typical for video post-processing, including image morphing, optical flow estimation, stereo rectification, disparity/depth reconstruction, and baseline adjustment. We incorporate recent advances in feature matching, energy minimization, stereo vision, and data clustering into our approach. At the core of our correspondence estimation we use Efficient Belief Propagation for energy minimization. While state-of-the-art algorithms only work on thumbnail-sized images, our novel feature downsampling scheme in combination with a simple, yet efficient data term compression, can cope with high-resolution data. The incorporation of SIFT (Scale-Invariant Feature Transform) features into data term computation further resolves matching ambiguities, making long-range correspondence estimation possible. We detect occluded areas by evaluating the correspondence symmetry, we further apply Geodesic matting to automatically determine plausible values in these regions.