1 resultado para graph matching algorithms
em Digital Peer Publishing
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aston University Research Archive (8)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (45)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Brock University, Canada (18)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CentAUR: Central Archive University of Reading - UK (114)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (23)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (85)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- CUNY Academic Works (13)
- Dalarna University College Electronic Archive (10)
- Department of Computer Science E-Repository - King's College London, Strand, London (93)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (23)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (41)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (7)
- Massachusetts Institute of Technology (11)
- Ministerio de Cultura, Spain (6)
- Nottingham eTheses (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (15)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (18)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (18)
- Scielo Saúde Pública - SP (6)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (3)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (4)
- Universidade do Minho (9)
- Universidade Federal do Rio Grande do Norte (UFRN) (23)
- Universita di Parma (1)
- Universitat de Girona, Spain (14)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (10)
- Université de Lausanne, Switzerland (58)
- Université de Montréal, Canada (16)
- University of Michigan (6)
- University of Queensland eSpace - Australia (43)
- University of Southampton, United Kingdom (7)
- University of Washington (1)
Resumo:
This paper presents an empirical study of affine invariant feature detectors to perform matching on video sequences of people with non-rigid surface deformation. Recent advances in feature detection and wide baseline matching have focused on static scenes. Video frames of human movement capture highly non-rigid deformation such as loose hair, cloth creases, skin stretching and free flowing clothing. This study evaluates the performance of six widely used feature detectors for sparse temporal correspondence on single view and multiple view video sequences. Quantitative evaluation is performed of both the number of features detected and their temporal matching against and without ground truth correspondence. Recall-accuracy analysis of feature matching is reported for temporal correspondence on single view and multiple view sequences of people with variation in clothing and movement. This analysis identifies that existing feature detection and matching algorithms are unreliable for fast movement with common clothing.