2 resultados para energy simulation
em Digital Peer Publishing
Resumo:
Energy efficiency has become an important research topic in intralogistics. Especially in this field the focus is placed on automated storage and retrieval systems (AS/RS) utilizing stacker cranes as these systems are widespread and consume a significant portion of the total energy demand of intralogistical systems. Numerical simulation models were developed to calculate the energy demand rather precisely for discrete single and dual command cycles. Unfortunately these simulation models are not suitable to perform fast calculations to determine a mean energy demand value of a complete storage aisle. For this purpose analytical approaches would be more convenient but until now analytical approaches only deliver results for certain configurations. In particular, for commonly used stacker cranes equipped with an intermediate circuit connection within their drive configuration there is no analytical approach available to calculate the mean energy demand. This article should address this research gap and present a calculation approach which enables planners to quickly calculate the energy demand of these systems.
Resumo:
An emergency lowering system for use in safety critical crane applications is discussed. The system is used to safely lower the payload of a crane in case of an electric blackout. The system is based on a backup power source, which is used to operate the crane while the regular supply is not available. The system enables both horizontal and vertical movements of the crane. Two different configurations for building the system are described, one with an uninterruptible power source (UPS) or a diesel generator connected in parallel to the crane’s power supply and one with a customized energy storage connected to the intermediate DC-link in the crane. In order to be able to size the backup power source, the power required during emergency lowering needs to be understood. A simulation model is used to study and optimize the power used during emergency lowering. The simulation model and optimizations are verified in a test hoist. Simulation results are presented with non-optimized and optimized controls for two example applications: a paper roll crane and a steel mill ladle crane. The optimizations are found to significantly reduce the required power for the crane movements during emergency lowering.