39 resultados para automatisierte Planung

em Digital Peer Publishing


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rechnergestützte Modellansätze, die Logistiksysteme gestalten und generieren, sind eine hochkomplexe Aufgabenstellung. Die bisher in der Praxis existierenden Planungs- und Steuerungsmodelle für Intralogistiksysteme weisen für die aktuellen und zukünftigen Anforderungen wie der Komplexitätsbewältigung, Reaktionsschnelligkeit und Anpassungsfähigkeit Schwachstellen auf. – Ein innovativer Ansatz, diesen Ansprüchen gerecht zu werden, stellen Multiagentensysteme dar. Mit ihrem dezentralen und modularen Charakter sind sie für ein komplexes Problem mit einem geringen Grad an Strukturiertheit geeignet. Außerdem ermöglichen diese computergestützten intelligenten Systeme den Anwendern eine einfache und aufwandsarme Handhabung.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Europäische Gießereiindustrie besteht zu einem großen Teil aus Klein- und Mittelständischen Unternehmen, die in Summe einen bedeutenden Anteil der produzierenden Industrie Europas bilden. Traditionell sind diese Unternehmen lediglich in einem geringen Umfang an Forschungs- und Entwicklungsaktivitäten beteiligt, was vielerorts den Einsatz veralteter Technologie und der damit verbundenen Prozesse zur Folge hat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vielen Bereichen der Industrie und des Handels mit hohem Güterumschlag werden moderne und hochautomatisierte förder- und lagertechnische Geräte eingesetzt. Am Punkt der Übergabe an den außerbetrieblichen Transport hört aber in vielen Fällen die Automatisierung auf. Die Verladung von Stückgütern bei Lkw geschieht trotz geeigneter automatisierter Umschlagsysteme überwiegend manuell mit Gabelhubwagen oder Staplern. Der Lehrstuhl für Fördertechnik Materialfluss Logistik (fml) entwickelte ein rechnergestütztes Hilfsmittel, um die Möglichkeiten der hierin verborgenen Rationalisierungspotenziale aufzuzeigen, aber auch Risiken und Gefahren einer Automatisierung des Umschlagbereichs abzuschätzen. Dieses Werkzeug wurde nun im harten planungsbegleitenden Einsatz in mehreren Pilotprojekten getestet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hohe Leistungsfähigkeit bei niedrigen Kosten sowie hoher Servicegrad und Flexibilität bilden die maßgeblichen Zielkriterien für intralogistische Systeme. Die daraus resultierende Anforderung der Systembetreiber nach einer adäquaten Leistungserbringung ist im Wesentlichen als mengen- und zeitgerechte Bewältigung der in das System eingegebenen Last zu verstehen. Bei der Erfüllung dieser dynamischen Anforderungen sind insbesondere drei Faktoren zu berücksichtigen, die einen Einfluss auf die Leistungserbringung besitzen. Hierbei handelt es sich um die technische Verfügbarkeit, die maximale Leistungsfähigkeit (Grenzleistung) sowie die Steuerungsstrategie auf operativer bzw. dispositiver Ebene. Die Untersuchung des Zusammenwirkens dieser Faktoren und die Zusammenführung dieser zu einem integrativen Berechnungsmodell sind Gegenstand aktueller Forschungsarbeiten am Lehrstuhl für Förder- und Lagerwesen. Ziel hierbei ist es, bereits im Rahmen der Systemplanung die zu erwartende, tatsächlich nutzbare Systemleistung zu ermitteln und bei der Systemgestaltung zu berücksichtigen, ohne hierfür aufwändige Simulationsstudien durchführen zu müssen. Der folgende Beitrag fasst die im Rahmen des Sonderforschungsbereich 696 der Deutschen Forschungsgemeinschaft erarbeiteten Ergebnisse aus dem Bereich der technischen Verfügbarkeit zusammen und gibt einen Ausblick auf weitere Arbeiten, die zur Entwicklung des integrierten Berechnungsmodells der Leistungsverfügbarkeit notwendig sind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obwohl Distributionszentren (DZ) zentrale Kernelemente von Lieferketten darstellen, lässt sich gegenwärtig keine strukturierte Methodik finden, um diese objektiv, systematisch und insbesondere ganzheitlich über alle Funktionsbereiche hinweg – vom Wareneingang über die Kommissionierung bis zum Warenausgang – zu planen. Der vorliegende Artikel befasst sich mit dieser wissenschaftlichen Lücke und beschreibt wie mit Hilfe von analytisch modellierten Standardmodulen innerhalb der verschiedenen Funktionsbereiche eines DZ durch Anwendung eines graphentheoretischen Ansatzes funktionsbereichsübergreifende Varianten von DZ generiert werden können. Zur automatisierten Ermittlung der optimalen Standardmodulkombination bzw. der optimalen DZ-Variante werden modifizierte Algorithmen zur Findung der kürzesten Wege innerhalb eines Graphen angewendet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Der Beitrag stellt eine Kollaborationssoftware vor, die im Rahmen des AiF-Forschungsprojektes „KoDeMat“ entwickelt wurde. Der Fokus wird auf die Problemfelder der fehlenden Standardisierung und Anpassbarkeit im Bereich von fördertechnischen Anlagen gerichtet. Ziel ist, unter Zuhilfenahme von standardisierten, kollaborativen Engineeringprozessen, eine unternehmensübergreifende Planung, Realisierung und einen Umbau von komplexen dezentral gesteuerten Intralogistiksystemen sowie deren Betrieb effizient zu ermöglichen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bei Einzel‐ und Kleinserienfertigung müssen sowohl langfristige Kooperationspartner als auch auftrags-spezifische, internationale Partner und Lieferanten in die Produktion komplexer Investitionsgüter einbezogen werden. Zunehmend sind kleine und mittlere Unternehmen (KMU) herausgefordert nicht nur technische Komponenten zu liefern, sondern die komplette Projektplanung zu realisieren. Im Forschungsprojekt „PIP“ soll ein Verfahren entwickelt werden, das gerade KMU des Maschinen- und Anlagenbaus bei der aufwandsmi-nimierten Partner- und Lieferantenauswahl sowie der Einschätzung möglicher Projektrisiken unterstützt. Der vorliegende Artikel beschreibt Rahmenbedingungen beim Aufbau projektspezifischer Produktionsnetzwerke sowie Lösungsansätze zu deren verbesserter Planung und Risikobewertung.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Das Verständnis von Leistungsverfügbarkeit, wie sie in der VDI-Richtlinie 4486 definiert ist, reicht für die Planung komplexer, dynamischer und teil-autonomer Systeme nicht aus. Die Definition in der VDI 4486 setzt den Fokus ausschließlich auf den Erfüllungsgrad vereinbarter Prozesse bei der Inbetriebnahme lo-gistischer Anlagen und regelt die Messungen und Be-rechnungen der Leistungsverfügbarkeit zu diesem Zeitpunkt. Es bleibt die Frage, wie ein Materialflusssystem für eine spezifizierte Leistungsverfügbarkeit geplant werden kann. Dazu werden die Wirkzusammenhänge zwischen dem logistischen System und seinen Sub-Systemen z.B. vertikale Integration von Wirkzusammenhängen der Instandhaltung, von Echtzeiteffekten der Kommunikationsprozesse oder Effekten der Ma-schinensteuerung, betrachtet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stets darauf bedacht, die Anlagen- und Maschinenverfügbarkeit bei möglichst geringem Ressourceneinsatz zu gewährleisten, wird die Rolle der Instandhaltung als unternehmerischer Wertschöpfungsfaktor immer bedeutsamer. Voraussetzung für eine Nutzbarmachung bestehender Potentiale sind neue Werkzeuge und Ansätze, deren Umsetzung eine effiziente Sicherstellung von Verfügbarkeit ermöglicht. Vor diesem Hintergrund wurde im Teilprojekt C3 des DFG Paketantrags 672 ein Konzept zur nutzungsabhängigen Instandhaltung entwickelt. Auf Grundlage des bestehenden Zusammenhangs von Nutzung und Abnutzung risikobehafteter Bauteile intralogistischer Systeme können damit die durch zukünftige Systemlasten hervorgerufenen Beanspruchungen antizipiert werden. Instandhaltungsmaßnahmen und technische Verfügbarkeiten werden dadurch anforderungsgerecht und ressourcen-optimal planbar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Im vorliegenden Beitrag wird ein Modell für die Beschreibung und Berechnung der Geometrie manuell bedienter Lagersysteme entwickelt und validiert, welches die Grundlage für eine rechnergestützte Planungssystematik bildet. Der modulare Aufbau des Modells ermöglicht durch entsprechende Erweiterungen die Berechnung des Lagerplatzbedarfs unter Berücksichtigung von Lagerstrategien. Auch die Betrachtung von Speziallösungen wie der Verwendung unterschiedlich hoher Lagerplätze ist möglich. Abschließend wird das vorgestellte Modell auf seine Anwendbarkeit zur systematischen Erzeugung verschiedener Layouts als Lösungsalternativen untersucht.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Umschlagleistung, Stellplatzzahl und Stellplatzkosten sind häufig für Lagersysteme die bedeutendsten Kenngrößen. Die Einflussfaktoren auf die Umschlagleistung lassen sich in technische und organisatorische Größen einteilen. Während für die technischen Parameter eine Reihe von Berechnungsvorschriften existieren, werden die organisatorischen Einflussgrößen meist nur qualitativ beschrieben oder durch Simulationsmodelle in speziellen Einzelfällen untersucht. Es soll hier eine Methode vorgestellt werden, die es ermöglicht die Umschlagleistung unter Berücksichtigung ausgewählter organisatorischer Einflussgrößen durch Nutzung von Simulationsdatenbanken zu berechnen. Die allgemeingültigen Simulationsergebnisse können mittels eines Berechnungsprogramms auf jedes beliebige Hochregallager übertragen werden. Dafür sind neben MS Excel keine weiteren Softwareprodukte erforderlich. 1. Einleitung Die produktionswirtschaftlichen Anforderungen an die Unternehmen sind zunehmend geprägt durch Globalisierung und damit durch eine zunehmende Komplexität sowie vertiefte Arbeitsteiligkeit. Es entsteht eine zunehmend breitere Streuung der Fertigungsstandorte und Kooperationsbeziehungen. Es gibt letztlich mehr Lager- und Umschlagprozesse in der Lieferkette. Andererseits bringt der erhöhte Qualitäts- und Kostendruck steigende Fixkosten mit sich, er zwingt zur ständigen Rationalisierung der Materialwirtschaft. Es besteht der Zwang zum Einsatz neuer technisch-elektronischer Mittel zur Kontrolle und Steuerung der logistischen Ketten. Im Lager bedeutet das eine zunehmende Nutzung der Informations- und Kommunikationstechnik zur Lager- und Fertigungssteuerung, auch in Verbindung mit Forderungen der Rückverfolgbarkeit der Produkte. An die Logistikleistungen werden damit Anforderungen wie Schnelligkeit, Qualität und Kostenminimierung gestellt. Letztlich bestehen die Warenbereitstellungs- und Verteilsysteme aus der technischen Grundstruktur, dem Lagertyp und dessen Geometrie sowie der dabei einsetzbaren Bedientechnik und deren kinematischen Daten. Der organisatorische Rahmen dieser Systeme ist gekennzeichnet durch die Nutzung diverser Ein- und Auslagerstrategien, die auch wesentlich Kosten und Leistungen (Umschlagleistung) des zu betrachtenden Lagersystems bestimmen. Aufgrund der genannten Forderungen muss es gelingen, aus dem eingesetzten technischen System durch organisatorisch effizienten Betrieb maximale Leistung bei gleichzeitig minimal eingesetzten Kosten zu erzielen. Neben den Investitionskosten sind bei der Planung von automatischen Lagersystemen die erreichbaren mittleren Spielzeiten der Bedientechnik von entscheidender Bedeutung, um die erforderliche Umschlagleistung des Lagers zu gewährleisten. Hierzu existieren eine Reihe von Berechnungsvorschriften und –normen. Diese Berechnungen berücksichtigen jedoch nicht die Auswirkungen der Lagerorganisation, wie beispielsweise fahrzeitminimale Kombinationen von Ein- und Auslageraufträgen bei Doppelspielen, Zonierungsmaßnahmen, die Auswirkungen von verschiedenen Füllgraden des Lagers oder Lagerplatzstrategien. 2. Stand der Technik 2.1. Lagertypen Abbildung 1: Systematische Einteilung der Lagertypen In Abbildung 1 sind verschiedene Lagertypen dargestellt und nach Kriterien eingeteilt. Soll eine Einschränkung hinsichtlich am Markt häufig vorkommender automatischer Palettenlager getroffen werden, so sind besonders die in der Abbildung hervorgehobenen Typen zu nennen. Eine Auswahl der einzelnen Lagertypen erfolgt dann anhand von Kosten, Umschlagleistung und bei Kompaktlagern vorrangig anhand von Flächen- und Raumnutzungsgrad. Werden die Kostenunterschiede bei Personal, Rechentechnik und Steuerungssoftware in den verschiedenen Lagertypen und -ausführungen der jeweiligen Typen vernachlässigt, unterscheiden sich die Gesamtkosten der Lager lediglich in der Bedientechnik sowie in den statisch bedingten Kosten der Regalkonstruktion. Die wichtigsten Kosteneinflüsse auf die Regale sind wiederum Bauhöhe und Bauart (Regalkonstruktion oder selbsttragendes Bauwerk). Abbildung 2 zeigt die zu erwartenden Umschlagleistungen1) der verschiedenen Lagertypen in Abhängigkeit der benötigten Stellplatzanzahl. Die darauf folgende Abbildung 3 zeigt die zu erwartenden Investitionskosten1) je Stellplatz. Die berücksichtigten Kenngrößen sind nachstehend dargestellt. Die abgebildeten Kurven machen deutlich, dass insbesondere Umschlagleistung der Lager und deren Flächen- bzw. Raumnutzungsgrad gegensätzlich verlaufen. Somit sind auch die Einsatzgebiete der Lagertypen voneinander abgrenzbar. Während Hochregallager für Anwendungsfälle mit hohem Gutumschlag in Frage kommen, werden die Kompaktlager eher in Objekten mit begrenztem Platz oder hohen Raumkosten (bspw. Kühllager) eingesetzt. Somit sind Kompaktlager auch häufig für die Umplanung bzw. der notwendigen Vergrößerung der Lagerkapazität innerhalb einer bestehenden baulichen Hülle interessant. Abbildung 2: Umschlagleistungen der verschiedenen Lagertypen Abbildung 3: Investitionskosten der einzelnen Lagertypen 2.2. Einzel-/ Doppelspiele Um anhand der Technik und der geometrischen Verhältnisse im Lager die höchstmögliche Umschlagleistung zu erzielen, ist es sinnvoll, Doppelspiele (DS) zu generieren. Somit ist nicht wie bei Einzelspielen (ES) je umgeschlagene Ladeeinheit eine Leerfahrt erforderlich, sondern nur je zweiter Ladeeinheit. Das Bediengerät fährt also vom Einlagerpunkt direkt zum Auslagerpunkt, ohne zum Übergabepunkt zurückkehren zu müssen. Diese Vorgehensweise setzt die Kenntnis der nächsten Fahraufträge und gegebenenfalls die Möglichkeit der Veränderung derer Reihenfolge voraus. Für eine Optimierung der Umschlagleistung ist die bei DS entstehende Leerfahrt (Zwischenfahrstrecke) und damit die Zwischenfahrzeit zu minimieren (vgl. 3.5). Nachfolgend beschriebene Untersuchungen beziehen sich jeweils auf Doppelspiele. Abbildung 4: Darstellung der anzufahrenden Lagerplätze in der Regalwand,links: Einzelspiel, rechts: Doppelspiel 2.3. Berechnungsvorschriften für Umschlagleistungen von Lagern Es existieren eine Reihe von Vorschriften zur Berechnung der Umschlagleistung von Lagern, exemplarisch sind drei Berechnungsvorschriften dargestellt. Die Richtlinie VDI 3561 [VDI3561] ermöglicht die Berechnung der Spielzeit auch für Doppelspiele. Dazu werden zwei Referenzpunkte festgelegt, die den Aus- bzw. Einlagerpunkt darstellen. Ein Doppelspiel besteht dann aus der Summe folgender Einzelzeiten: • der Hinfahrt vom Übergabepunkt zum Einlagerpunkt (P1), • der Leerfahrt vom Ein- zum Auslagerpunkt (P2) und der • Rückfahrt vom Auslagerpunkt zum Übergabepunkt (vgl. Abb.4 rechts). Die Summe dieser Einzelzeiten wird danach mit der Summe der Übergabezeiten addiert. Der Unterschied der Richtlinie und der Berechnungsvorschrift nach [Gud00] bestehen im wesentlichen aus der Lage der Ein- und Auslagerpunkte. Fahrzeitberechnung nach VDI 3561 P1 ; P2 Fahrzeitberechnung nach Gudehus 1) P1 ; P2 1)Annahme: Vernachlässigung von Totzeiten, Lastaufnahmefaktor = 1 Wird davon ausgegangen, dass in Abhängigkeit der Gassengeometrie immer nur eine der beiden Fahrzeitanteile (vertikal bzw. horizontal) spielzeitbestimmend ist, so ergeben sich beide Fahrstrecken zu 4/3 der jeweiligen Gesamtabmessung. Der Unterschied der beiden Berechnungsvorschriften liegt lediglich in der Aufteilung der Gesamtfahrstrecke auf die Teilfahrstrecken Hin-, Rück- bzw. Zwischenfahrt. Da jedoch die Fahrzeit zu den Anfahrpunkten in der Regel nicht von der gleichen Fahrzeitkomponente bestimmt wird, kommt es in der Praxis zu Unterschieden im Berechnungsergebnis. Die unter dem Titel „Leistungsnachweis für Regalbediengeräte, Spielzeiten“ stehende Norm FEM 9.851 [FEM9.851] beschäftigt sich ebenfalls mit der Berechnung von Spielzeiten von Regalbediengeräten (RBG). Dabei werden sechs verschiedene Anwendungsfälle generiert, die am häufigsten in der Praxis vorkommen. Diese unterscheiden sich insbesondere in der Lage der Übergabepunkte für die Ein- und Auslagerung. Dabei werden die Punkte sowohl horizontal als auch vertikal verschoben. Es werden hierbei auch Fälle betrachtet, in denen der Auslagerpunkt nicht mit dem Einlagerpunkt übereinstimmt, sich beispielsweise auch an dem gegenüberliegenden Gassenende befinden kann. Wird der einfachste Fall betrachtet, dass sich der Übergabepunkt für die Ein- und Auslagerung übereinstimmend an einer unteren Ecke der Gasse befindet, stimmen die Berechnungsformeln mit [Gud00] weitgehend überein. 2.4. Kritik und Untersuchungsansatz Die Berechnung der mittleren Spielzeit der einzelnen Lagergassen durch die beschriebenen Normen erfolgt in der Regel ohne die Berücksichtigung der Geschwindigkeitsdiagonalen, deren Steigung c durch nachstehendes Verhältnis gegeben ist. Eine genaue Betrachtung der verschiedenen Gassengeometrien im Verhältnis zu den Geschwindigkeiten der Bediengeräte zeigt, dass es bei ungünstiger Lage der Geschwindigkeitsdiagonalen in der Regalwand zu Abweichungen der Berechnungsnormen von der tatsächlich zu erwartenden mittleren Spielzeit kommt. Im praktischen Lagerbetrieb wird mit verschiedenen Maßnahmen der Lagerorganisation versucht, die Umschlagleistung zu erhöhen. Diese Maßnahmen können jedoch mit den hier beschriebenen Normen und Berechnungsmethoden nicht berücksichtigt werden. Da Zonierungen, Lagerplatzstrategien oder Reihenfolgeoptimierungen der Ein- und Auslageraufträge (Zuordnungsproblem) Einfluss auf die Umschlagleistung des Lagers haben, sollten sie auch bei der Berechnung berücksichtigt werden. In den zahlreichen Veröffentlichungen mit dem Ziel der Erhöhung der Umschlagleistung eines Lagerbereiches finden sich häufig Darstellungen, die einzelne Auswirkungen der Lagerorganisation untersuchen. Dabei bleiben aber die gegenseitigen Beeinflussungen und Wechselwirkungen meist unberücksichtigt. Um dennoch solche Einflussgrößen realitätsnah berücksichtigen zu können, werden üblicherweise Simulationsmodelle erstellt, die den jeweiligen Anwendungsfall nachbilden. Die Erstellung solcher Modelle benötigt jedoch neben der entsprechenden Software Zeit und verursacht damit weitere Kosten. Aus diesem Grund ist ein solches Vorgehen erst bei einem bestimmten Grad an Komplexität der Anlage sinnvoll. Damit ist die Übertragbarkeit solcher Modelle auf verschiedene Anwendungsfälle nicht immer gegeben. 3. Dynamische Spielzeitberechnung 3.1. Vorgehen und Abgrenzung zum Forschungsstand Um die Auswirkungen der Lagerorganisation auf die Umschlagleistung sinnvoll abschätzen zu können, wurde ein allgemeingültiges Simulationsmodell erstellt. Dieses Modell startet sich nach vorgeschriebener Simulationszeit selbstständig neu mit vordefinierten Änderungen der Eingangsgrößen wie z. B.. Geschwindigkeiten und Beschleunigungen der Bedientechnik in Abhängigkeit der Gassengeometrie. Nacheinander konnten somit ausgewählte, in das Modell implementierte Lagerorganisationsformen untersucht werden. Der Unterschied zu bisherigen in der Literatur dokumentierter Untersuchungen besteht in der Berücksichtigung gegenseitiger Wechselwirkungen der Lagerorganisation. Bisher wurden dagegen die verschiedenen Strategien und Regeln im Lagerbetrieb meist nur losgelöst voneinander unter einem speziellen abgegrenzten Blickwinkel betrachtet. Um die Menge an Simulationsergebnissen für einen praktischen Einsatz zur Verfügung zu stellen, wurde ein Programm auf Basis von MS Excel erstellt, das die relevanten Simulationsdaten aufarbeitet und dem Anwender einfach und übersichtlich zur Verfügung stellt. Es ist somit möglich, die gefundenen Simulationsergebnisse auf verschiedenste Hochregal-Lagersysteme zu übertragen. Das Berechnungsmodell wurde an einem existierenden Hochregallager getestet. Es können Aussagen hinsichtlich der optimalen, d. h. spielzeit- und kostenminimalen Lagergeometrie unter Berücksichtigung gegebener Randbedingungen getroffen werden. 3.2. Übergabepunkte Neben den verschiedenen untersuchten Lagerstrategien wurde zunächst nach Möglichkeiten gesucht, die Umschlagleistungen des Typs der herkömmlichen Hochregallager unter technischen Gesichtspunkten zu verbessern. Dabei wurde v. a. die Verlegung des Übergabepunktes in die Mitte der Gassenwand untersucht. Dies hat das Ziel, die mittleren Verfahrwege der Bedientechnik im Lager zu halbieren. Abbildung 5: Maximale Verfahrwege der Bedientechnik in der Regalgasse Die Ver- und Entsorgung des Materials an den Übergabeplätzen mit Lagergut kann hierbei durch zwei verschiedene Möglichkeiten gelöst werden: • Zuführung in x- oder y-Richtung, • Zuführung in z-Richtung. Ersteres Vorgehen führt in Abhängigkeit der Anzahl der Zu- und Abführkanäle zu einem großen Verlust an Lagerplätzen. Bei letzterem Vorgehen liegen die Versorgungskanäle senkrecht zu den Verfahrwegen der Bedientechnik. Das hat den Vorteil, dass die Versorgung der Übergabeplätze über die gleichen Ver- und Entsorgungskanäle erfolgt und somit erheblich weniger Lagerplatz benötigt wird. Dieses Vorgehen benötigt jedoch neben erhöhtem Steuerungsaufwand eine veränderte konstruktive Gestaltung der Gassenübergänge z. B. durch klappbare Brücken oder ein entsprechendes aus- und einfahrbares Gabelsystem. Da sich hierbei die RBG und das Lagergut behindern können, wurden Simulationsuntersuchungen zur Minimierung der Wartezeiten der RBG durchgeführt. Je mehr Kanäle für die Ein- und Auslagerung zur Verfügung stehen, umso kürzer sind die Wartezeiten der Bediengeräte. Dabei bieten sich insbesondere zwei Optimierungsstrategien an, die diese Wartezeiten minimieren können. Einerseits verursachen gassenreine Kanäle keine zusätzlichen Wartezeiten der RBG, da die benötigte Palette im jeweiligen Einlagerungskanal zur Verfügung steht. Zudem reduzieren sich die Einlagerungskanäle, je weiter die Mitte des Lagerblocks erreicht wird. Andererseits steigen die Wartezeiten der RBG schnell an, je ungünstiger das Verhältnis von Gassenanzahl zu Einlagerungskanälen wird. Dies gilt auch bei sinnvoller Begrenzung der Gassenanzahl pro Einlagerungskanal. Abbildung 6: Reihenfolgeoptimale Einschleusung der Einlagerpaletten, keine Beschränkung der Gassen pro Kanal Ist die Zahl der Gassen des Lagerblockes größer als die Zahl der Einschleuskanäle, so ist eine optimale Reihenfolge der Paletten umzusetzen, bei der die Paletten gleichmäßig auf alle Kanäle verteilt werden. Abbildung 6 zeigt die so erreichten mittleren Wartezeiten der RBG. Hier ist der Abstand zwischen zwei Paletten, die in den gleichen Gang eingelagert werden müssen, am größten. Dies führt zu minimalen Stillstandszeiten der RBG. Für die Ausschleusung der Paletten aus dem Lagerblock ist jedoch ein Kanal ausreichend. Eine technische Realisierbarkeit (auch hinsichtlich der Funktionssicherheit der Gassenbrücken) ist zu prüfen. Eine wirtschaftliche Umsetzung einer solchen Beschickung der RBG, so hat der Versuch gezeigt, macht Sinn. Es kann hierbei bei günstiger Lage der Übergabepunkte in der Regalwand nahezu 50 % der Fahrzeit eingespart werden. Bei vergleichsweise langen und hohen Gassen kann damit die mittlere Spielzeit teilweise um über 25 % gesenkt werden. 3.3. Lagerplatzstrategien Es wurden insbesondere zwei verschiedene Strategien untersucht. Einerseits wurde zur besseren Vergleichbarkeit die chaotische Lagerplatzauswahl (nachfolgend: Strategie „Chaotisch“) sowie die in der Literatur auch als „Kürzeste Fahrzeitregel (KFZ)“ bezeichnete Strategie [Gla05]. Letztere soll nachfolgend aufgrund der Auswahl des jeweils vordersten Lagerplatzes als Strategie „KFZ“ bezeichnet werden. In Abbildung 7 sind die bei zunehmender Gassengeometrie sich in Abhängigkeit der Strategien vergrößernden Fahrzeitunterschiede dargestellt. Damit ist bei höheren bzw. längeren Gassen die Strategie „KFZ�� empfehlenswert. Abbildung 7: Vergleich der Strategien „Chaotisch“ und „KFZ“ bei unzonierter Lagergasse In ist weiterhin zu erkennen, dass der Einfluss der Beschleunigung bei längeren Fahrstrecken abnimmt. Insbesondere bei kleinen Gassenabmessungen kann der Beschleunigungseinfluss nicht vernachlässigt werden. So sind in Abbildung 8 Gassenabmessungen angegeben, von wo ab die Beschleunigung der Bedientechnik der jeweiligen Richtungskomponente vernachlässigbar ist. Die Grenze des Beschleunigungseinflusses wurde mit 5 % der Gesamtfahrzeit willkürlich festgelegt. Es ist zu erkennen, dass der Beschleunigungseinfluss mit höherer Geschwindigkeit zunimmt, da das RBG eine längere Zeit und damit auch eine längere Fahrstrecke benötigt, um die Maximalgeschwindigkeit zu erreichen. Abbildung 8:Vernachlässigungsgrenzen der Beschleunigung Anhand des Diagramms ist weiterhin zu erkennen, dass die Beschleunigungen bei in der Praxis geläufigen Gassenlängen nicht zu vernachlässigen sind. Ein zur Validierung der Simulation genutztes Lager (ca. 80 x 40m, vx ≈ 1,8 m/s, vy ≈ 0,8 m/s) liegt hinsichtlich der Gassenlänge über der festgelegten Grenze, hinsichtlich seiner Höhe jedoch darunter. Somit sind auch hier die Beschleunigungen nicht zu vernachlässigen. 3.4. Zonierung Die häufigste und bekannteste Form der Zonierung in der Lagergasse ist die ABC-Zonierung. Diese geht davon aus, dass durch eine Platzierung der umsatzstarken Paletten (Schnelldreher) in der Nähe des Übergabeplatzes die mittleren Fahrstrecken der Bedientechnik vermindert werden. Abbildung 9 zeigt das Verhältnis der mittleren Anfahrpunkte in Abhängigkeit der Zonierungsart. Die Zahlenkombination (80/20) kennzeichnet bspw. 80 % des Gesamtumsatzes zu dem ihn verursachenden 20 % Mengenanteil der gesamten eingelagerten Palettenzahl [Pfo96]. Abbildung 9: Mittlere Anfahrpunkte relativ zu den Gesamtabmessungen, chaotische Lagerplatzvergabe Abbildung 10 stellt den Einfluss des Zusammenwirkens von Lagerplatzstrategien und der Zonierung dar. Dabei ist zu erkennen, dass sich bei ungünstiger Sortenverteilung von 80/80 (Umsatz-/ Mengenanteil) das Verhältnis der mittleren Fahrzeit gegenüber der unzonierten Gasse bei größeren Abmessungen erhöht. Bei günstigem Zonierungsfall (80/20) ist dieser Zusammenhang nicht zu beobachten. Hier bringt eine Zonierung Vorteile. Weiterhin ist zu erkennen, dass die Vorteile einer Zonierung bei gleichzeitig verbesserter Lagerplatzstrategie geringer sind. Abbildung 10: Zonierungsabhängige Auswirkungen der Lagerplatzstrategien auf die Fahrzeiten 3.5. Optimierung der Auftragsreihenfolge Die beschriebenen Lagerplatzvergabestrategien und Zonierungen haben das Ziel, durch Verminderung der Anfahr- und Rückwege der Bedientechnik die Fahrstrecken und damit die Fahr- und Spielzeiten zu verringern. Eine Optimierung der Reihenfolge bzw. der Zuordnung der Ein- und Auslageraufträge bei der Bildung von Doppelspielen soll dagegen die Strecken der Leerfahrten zwischen den kombinierten Lagerplätzen verringern. Auch hier konnten Auswirkungen bspw. der Zonierung nachgewiesen werden. Abbildung 11: Optimierung der Zwischenfahrzeit, Fahrzeit im Vergleich zu unoptimierter Fahrzeit Abbildung 11 zeigt die optimierten Zwischenfahrzeiten im Vergleich zu unoptimierten Zwischenfahrzeiten. Da eine Testung aller Möglichkeiten (Permutation) zu unzumutbarem Rechenaufwand führt, konnten hier nur Kombinationen von maximal 8 x 8 Aufträgen durchgeführt werden. Um dennoch auch größere Auftragspools berechnen zu können, wurde auf das Vogelsche Approximationsverfahren zurückgegriffen. Die dargestellten Kurvenverläufe stellen eine idealisierte Kennlinie der gefundenen Ergebnisse dar. Um in der Praxis eine solche Optimierung durchführen zu können, müssen die jeweils folgenden Aufträge bekannt sein. 3.6. Füllgrad Abbildung 12 zeigt Untersuchungen zum Füllgrad des Lagers. Minderungen der Umschlagleistungen waren ab einem Füllgrad von ca. 80% zu erkennen. Es konnten zwei Knickpunkte der Kurve der Umschlagleistung beobachtet werden. Der Punkt P1 stellt die Länge dar, unter der eine Verringerung der Leistung des Lagers eintritt. Der Punkt P2 beschreibt die Länge, unter der das Absinken der Umschlagleistung des Lagers verstärkt wird. Abbildung 12: Auswirkungen des Füllgrades des Lagers auf die Umschlagleistung 3.7. Berechnungsprogramm Um die Simulationsergebnisse auf beliebige Anwendungsfälle übertragen zu können, wurde ein Berechnungsprogramm erstellt. Durch Berechnung der wirksamen Gassenlänge werden die simulierten Fahrzeiten durch Interpolation auf die Daten des Anwendungsfalls übertragen. Es fließen insbesondere auch die untersuchten Auswirkungen der Lagerorganisation in die Berechnungen ein. Zur besseren Vergleichbarkeit der Berechnungsergebnisse sowie zur Definition der durch die Lagerorganisation erreichten Leistungserhöhung, wurden die Ergebnisse den Berechnungsnormen gegenübergestellt. Als weiteres Ergebnis des Programms können die Kosten des Lagers abgeschätzt werden. Dabei werden die Kosten für das Lager insgesamt, als auch die je Lagerplatz berechnet. Zunächst müssen bei zu projektierenden Lagern die Abmessungen, die Anzahl der Lagergassen und die technischen Daten der Bedientechnik festgelegt werden. Die Geometrie der Lagergasse bestimmt sich in diesem Stadium durch die Anzahl der benötigten Stellplätze und der räumlichen Restriktionen. Dabei werden unter Berücksichtigung der eingegebenen Grenzabmessungen für Breite, Tiefe und Höhe die Anzahl der Regalgassen berechnet. Hierzu werden durch den Einsatz von teuren RBG lange und hohe Gassen bevorzugt. Die Gassen werden so gestaltet, dass sowohl die Gassengeometrie optimal ist, als auch die maximale Bedienhöhe der Geräte erreicht wird. Um die geforderte Lagerplatzanzahl zu erlangen, werden Vielfache der so dimensionierten Regalgasse gebildet, bis die benötigte Stellplatzanzahl erstmals überschritten ist. Grenzen der Abmessungen können bspw. durch die einzusetzende Bedientechnik oder bereits bestehende Lagerhülle gegeben sein. 4. Zusammenfassung und Ausblick Anhand der Untersuchungen wurde eine Möglichkeit aufgezeigt, die es dem Anwender ermöglicht, ohne zusätzliche Hilfsmittel und spezielle Kenntnis von Simulationsprogrammen die Umschlagleistung eines Lagers zu berechnen. Er greift durch die Nutzung eines Berechnungsprogramms, das in MS Excel- VBA (Visual Basic for Applications) erstellt wurde auf eine Simulationsdatenbank zu. Diese Simulationsdatenbank berücksichtigt wesentliche organisatorische und technische Daten eines Lagersystems. Der Bediener kann somit die Umschlagleistung für seinen Planungsfall unter Berücksichtigung der Lagerorganisation sowie deren Wechselwirkungen berechnen. Um das Einsatzgebiet der Methode zu erweitern und allgemeiner zu gestalten sind weitere Vervollständigungen der Maßnahmenbibliothek sinnvoll. Zum Anderen ist es möglich, die Simulationsdatenbank um andere Lagertypen sowie mehrfachtiefe Einlagerungen zu erweitern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radio Frequency Identification (RFID) beeinflusst unbestritten zahlreiche Anwendungsgebiete und schafft die Grundlage für die zukünftige Entwicklung logistischer Systeme. Von besonderer Bedeutung ist in diesem Zusammenhang die systematische Identifikation von Einsatzpotenzialen für diese Technologie. Bislang existiert hierfür noch keine allgemein verbreitete Methodik. Diese Problematik greift der folgende Beitrag auf und zeigt, wie aus den technischen Grundlagen und analysierten Praxisanwendungen Identifikationskriterien abgeleitet werden können. Die so erarbeiteten Kriterien werden in ihrer Anwendung anhand eines fiktiven Beispiels erläutert und damit exemplarisch eine mögliche Analysemethodik vorgestellt. 1. Einleitung Die produktionswirtschaftlichen Anforderungen an die Unternehmen sind zunehmend geprägt durch Globalisierung und damit durch eine zunehmende Komplexität sowie vertiefte Arbeitsteiligkeit. Es entsteht eine zunehmend breitere Streuung der Fertigungsstandorte und Kooperationsbeziehungen. Es gibt letztlich mehr Lager- und Umschlagprozesse in der Lieferkette. Andererseits bringt der erhöhte Qualitäts- und Kostendruck steigende Fixkosten mit sich, er zwingt zur ständigen Rationalisierung der Materialwirtschaft. Es besteht der Zwang zum Einsatz neuer technisch-elektronischer Mittel zur Kontrolle und Steuerung der logistischen Ketten. Im Lager bedeutet das eine zunehmende Nutzung der Informations- und Kommunikationstechnik zur Lager- und Fertigungssteuerung, auch in Verbindung mit Forderungen der Rückverfolgbarkeit der Produkte. An die Logistikleistungen werden damit Anforderungen wie Schnelligkeit, Qualität und Kostenminimierung gestellt. Letztlich bestehen die Warenbereitstellungs- und Verteilsysteme aus der technischen Grundstruktur, dem Lagertyp und dessen Geometrie sowie der dabei einsetzbaren Bedientechnik und deren kinematischen Daten. Der organisatorische Rahmen dieser Systeme ist gekennzeichnet durch die Nutzung diverser Ein- und Auslagerstrategien, die auch wesentlich Kosten und Leistungen (Umschlagleistung) des zu betrachtenden Lagersystems bestimmen. Aufgrund der genannten Forderungen muss es gelingen, aus dem eingesetzten technischen System durch organisatorisch effizienten Betrieb maximale Leistung bei gleichzeitig minimal eingesetzten Kosten zu erzielen. Neben den Investitionskosten sind bei der Planung von automatischen Lagersystemen die erreichbaren mittleren Spielzeiten der Bedientechnik von entscheidender Bedeutung, um die erforderliche Umschlagleistung des Lagers zu gewährleisten. Hierzu existieren eine Reihe von Berechnungsvorschriften und –normen. Diese Berechnungen berücksichtigen jedoch nicht die Auswirkungen der Lagerorganisation, wie beispielsweise fahrzeitminimale Kombinationen von Ein- und Auslageraufträgen bei Doppelspielen, Zonierungsmaßnahmen, die Auswirkungen von verschiedenen Füllgraden des Lagers oder Lagerplatzstrategien. 2. Stand der Technik 2.1. Lagertypen Abbildung 1: Systematische Einteilung der Lagertypen In Abbildung 1 sind verschiedene Lagertypen dargestellt und nach Kriterien eingeteilt. Soll eine Einschränkung hinsichtlich am Markt häufig vorkommender automatischer Palettenlager getroffen werden, so sind besonders die in der Abbildung hervorgehobenen Typen zu nennen. Eine Auswahl der einzelnen Lagertypen erfolgt dann anhand von Kosten, Umschlagleistung und bei Kompaktlagern vorrangig anhand von Flächen- und Raumnutzungsgrad. Werden die Kostenunterschiede bei Personal, Rechentechnik und Steuerungssoftware in den verschiedenen Lagertypen und -ausführungen der jeweiligen Typen vernachlässigt, unterscheiden sich die Gesamtkosten der Lager lediglich in der Bedientechnik sowie in den statisch bedingten Kosten der Regalkonstruktion. Die wichtigsten Kosteneinflüsse auf die Regale sind wiederum Bauhöhe und Bauart (Regalkonstruktion oder selbsttragendes Bauwerk). Abbildung 2 zeigt die zu erwartenden Umschlagleistungen1) der verschiedenen Lagertypen in Abhängigkeit der benötigten Stellplatzanzahl. Die darauf folgende Abbildung 3 zeigt die zu erwartenden Investitionskosten1) je Stellplatz. Die berücksichtigten Kenngrößen sind nachstehend dargestellt. Die abgebildeten Kurven machen deutlich, dass insbesondere Umschlagleistung der Lager und deren Flächen- bzw. Raumnutzungsgrad gegensätzlich verlaufen. Somit sind auch die Einsatzgebiete der Lagertypen voneinander abgrenzbar. Während Hochregallager für Anwendungsfälle mit hohem Gutumschlag in Frage kommen, werden die Kompaktlager eher in Objekten mit begrenztem Platz oder hohen Raumkosten (bspw. Kühllager) eingesetzt. Somit sind Kompaktlager auch häufig für die Umplanung bzw. der notwendigen Vergrößerung der Lagerkapazität innerhalb einer bestehenden baulichen Hülle interessant. Abbildung 2: Umschlagleistungen der verschiedenen Lagertypen Abbildung 3: Investitionskosten der einzelnen Lagertypen 2.2. Einzel-/ Doppelspiele Um anhand der Technik und der geometrischen Verhältnisse im Lager die höchstmögliche Umschlagleistung zu erzielen, ist es sinnvoll, Doppelspiele (DS) zu generieren. Somit ist nicht wie bei Einzelspielen (ES) je umgeschlagene Ladeeinheit eine Leerfahrt erforderlich, sondern nur je zweiter Ladeeinheit. Das Bediengerät fährt also vom Einlagerpunkt direkt zum Auslagerpunkt, ohne zum Übergabepunkt zurückkehren zu müssen. Diese Vorgehensweise setzt die Kenntnis der nächsten Fahraufträge und gegebenenfalls die Möglichkeit der Veränderung derer Reihenfolge voraus. Für eine Optimierung der Umschlagleistung ist die bei DS entstehende Leerfahrt (Zwischenfahrstrecke) und damit die Zwischenfahrzeit zu minimieren (vgl. 3.5). Nachfolgend beschriebene Untersuchungen beziehen sich jeweils auf Doppelspiele. Abbildung 4: Darstellung der anzufahrenden Lagerplätze in der Regalwand,links: Einzelspiel, rechts: Doppelspiel 2.3. Berechnungsvorschriften für Umschlagleistungen von Lagern Es existieren eine Reihe von Vorschriften zur Berechnung der Umschlagleistung von Lagern, exemplarisch sind drei Berechnungsvorschriften dargestellt. Die Richtlinie VDI 3561 [VDI3561] ermöglicht die Berechnung der Spielzeit auch für Doppelspiele. Dazu werden zwei Referenzpunkte festgelegt, die den Aus- bzw. Einlagerpunkt darstellen. Ein Doppelspiel besteht dann aus der Summe folgender Einzelzeiten: • der Hinfahrt vom Übergabepunkt zum Einlagerpunkt (P1), • der Leerfahrt vom Ein- zum Auslagerpunkt (P2) und der • Rückfahrt vom Auslagerpunkt zum Übergabepunkt (vgl. Abb.4 rechts). Die Summe dieser Einzelzeiten wird danach mit der Summe der Übergabezeiten addiert. Der Unterschied der Richtlinie und der Berechnungsvorschrift nach [Gud00] bestehen im wesentlichen aus der Lage der Ein- und Auslagerpunkte. Fahrzeitberechnung nach VDI 3561 P1 ; P2 Fahrzeitberechnung nach Gudehus 1) P1 ; P2 1)Annahme: Vernachlässigung von Totzeiten, Lastaufnahmefaktor = 1 Wird davon ausgegangen, dass in Abhängigkeit der Gassengeometrie immer nur eine der beiden Fahrzeitanteile (vertikal bzw. horizontal) spielzeitbestimmend ist, so ergeben sich beide Fahrstrecken zu 4/3 der jeweiligen Gesamtabmessung. Der Unterschied der beiden Berechnungsvorschriften liegt lediglich in der Aufteilung der Gesamtfahrstrecke auf die Teilfahrstrecken Hin-, Rück- bzw. Zwischenfahrt. Da jedoch die Fahrzeit zu den Anfahrpunkten in der Regel nicht von der gleichen Fahrzeitkomponente bestimmt wird, kommt es in der Praxis zu Unterschieden im Berechnungsergebnis. Die unter dem Titel „Leistungsnachweis für Regalbediengeräte, Spielzeiten“ stehende Norm FEM 9.851 [FEM9.851] beschäftigt sich ebenfalls mit der Berechnung von Spielzeiten von Regalbediengeräten (RBG). Dabei werden sechs verschiedene Anwendungsfälle generiert, die am häufigsten in der Praxis vorkommen. Diese unterscheiden sich insbesondere in der Lage der Übergabepunkte für die Ein- und Auslagerung. Dabei werden die Punkte sowohl horizontal als auch vertikal verschoben. Es werden hierbei auch Fälle betrachtet, in denen der Auslagerpunkt nicht mit dem Einlagerpunkt übereinstimmt, sich beispielsweise auch an dem gegenüberliegenden Gassenende befinden kann. Wird der einfachste Fall betrachtet, dass sich der Übergabepunkt für die Ein- und Auslagerung übereinstimmend an einer unteren Ecke der Gasse befindet, stimmen die Berechnungsformeln mit [Gud00] weitgehend überein. 2.4. Kritik und Untersuchungsansatz Die Berechnung der mittleren Spielzeit der einzelnen Lagergassen durch die beschriebenen Normen erfolgt in der Regel ohne die Berücksichtigung der Geschwindigkeitsdiagonalen, deren Steigung c durch nachstehendes Verhältnis gegeben ist. 1. Einleitung Eine umfassende Prozessanalyse ist die Grundlage einer jeden erfolgreichen RFID-Anwendung [o.Verf. 2006]. Die Merkmale, die bei einer solchen Untersuchung zu beachten sind, werden allerdings nicht öffentlich diskutiert. Wie Resch in seinem Ansatz zeigt, ist aber gerade die Analysephase von entscheidender Bedeutung für den späteren Erfolg einer RFID-Anwendung (vgl. Abb. 1). Abbildung 1: Fehlende Methodiken der Prozessanalyse [Resch2005] In dieser Phase besteht der größte Gestaltungsfreiraum für die spätere Umsetzung. Da in dieser Phase das größte Optimierungspotenzial einer RFID-Anwendung festgelegt wird, entscheidet sich bereits zu Beginn eines Projektes wie groß der maximal erreichbare Nutzen einer Lösung sein kann. Bisher existieren keine allgemein verbreiteten Methoden und Kriterien zur Identifikation dieser Einsatz-/Nutzenpotenziale. Die Prozessanalyse ist die Basis zukünftiger RFID-Anwendungen und ist daher entsprechend umfangreich durch zu führen. RFID-Einsatzpotenziale werden aktuell nur in Funktionsbereichen kommuniziert. Diese Pauschalisierung engt die Sicht auf potenzielle Anwendungen allerdings sehr stark ein. Dadurch besteht die Gefahr, dass die vorhandenen Nutzenpotenziale indirekt beteiligter Prozesse nicht beachtet werden. Es ist daher zwingend notwendig möglichst alle material- und informationsflussbezogenen Prozesse auf ein RFID-Einsatzpotenzial hin zu untersuchen. D.h. sowohl die Prozesse mit direktem Materialflussbezug (bspw. Wareneingang) als auch die Prozesse, die nur indirekt, über den Informationsfluss, mit dem Materialfluss verknüpft sind (bspw. Disposition). Der vorliegende Beitrag stellt daher einen ersten Ansatz für die Ermittlung allgemeingültiger Analysekriterien für RFID-Einsatzpotenziale. Die vorgestellte Methodik und der daraus entwickelte Kriterienkatalog sollen es ermöglichen, RFID-Anwendungen in der Analysephase auf ein möglichst vollständiges Nutzengerüst zu stellen und so den maximalen Nutzen einer Anwendung systematisch zu ermitteln. 2. Identifikationskriterien 2.1. Methodik Basierend auf der Überlegung die Kriterien sowohl theoretisch als auch auf Basis von Praxiserfahrungen zu entwickeln, dienen neben der Betrachtung technischer Grundlagen auch Analysen von realisierten Anwendungen und Pilotprojekten als Basis der Kriterienentwicklung. Abbildung 2 zeigt die grundsätzliche Methodik hinter der Entwicklung der Kriterien. Dabei zeigt sich, dass aus dem gewählten Ansatz zwangsläufig zwei differierende Typen von Kriterien entwickelt werden müssen. Technische Kriterien, aus den Grundlagen der RFID beziehen sich vor allem auf das vorherrschende Prozessumfeld. Frequenzspezifische Eigenschaften (Leistungsdaten) und allgemeine, also frequenzübergreifende Eigenschaften der RFID-Technik bilden die Ausgangsbasis für diese Kriteriengruppe. Dabei werden diese technologischen Eigenschaften in Prozessmerkmale überführt, anhand derer im konkreten Prozessumfeld eine Technologieauswahl durchgeführt werden kann. So können potenzielle RFID-Anwendungen auf eine prinzipielle Anwendbarkeit hin überprüft werden. Abbildung. 2: Vorgehen zur Entwicklung der Identifikationskriterien [Resch2005] Die zweite Gruppe der Kriterien, die organisatorischen Kriterien, werden aus Praxiserfahrungen abgeleitet. Basis dieser Analyse sind Prozesse aus realisierten Anwendungen und Pilotprojekten. Dieser praxisbasierte Teil stellt prozessbezogene Merkmale zusammen, deren Schwerpunkt auf prozessspezifischen organisatorischen Merkmalen, bspw. Durchsatz, oder auch Dokumentationsaufwand liegt. Die ausgewählten Praxisbeispiele sind nach ihren individuellen Prozessmerkmalen analysiert worden. Die Ergebnisse wurden stichpunktartig zusammengefasst, in übergeordnete Kategorien gruppiert und abschließend nach ihrem Flussbezug gegliedert. RFID-Anwendungen beeinflussen sowohl materialflussbezogene Prozesse, als auch direkt oder auch indirekt verknüpfte informationsflussbezogene Prozesse. Daher erfolgt eine Ordnung der identifizierten Kriteriengruppen nach ihrem Flussbezug, um so einem Anwender die Betrachtungsweise nachhaltig zu verdeutlichen und die Analyse zu vereinfachen. 2.2. Praxisbeispiele Die analysierten Praxisbeispiele sind zum Großteil in der Automobilindustrie realisiert (vgl. Abb. 3). Die weiteren Anwendungen sind aus der Instandhaltung sicherheitsrelevanter technischer Gebäudeausrüstung, aus einem Hochregallager eines Logistikdienstleisters sowie aus der Luftfahrtindustrie. Abbildung 3: Branchenspezifische Verteilung der Praxisbeispiele Die Auswahl der Praxisbeispiele ist bewusst auf die Automobilindustrie fokussiert. Dieser Industriezweig hat in Deutschland bereits einige Anwendungen und eine Vielzahl an Pilotprojekten initiiert. Die Bandbreite der realisierten Projekte ist sehr groß und deckt daher viele verschiedene Anwendungsfälle ab. Die Ergebnisse der Untersuchung sind aber auch auf andere Branchen übertragbar, da die untersuchten Praxisprojekte Situationen abbilden, die ebenfalls leicht zu übertragen sind. Die analysierten Anwendungen bilden ein sehr breites Feld an Einsatzszenarien ab. Anwendungen mit massenhaften Stückzahlen sind ebenso vertreten, wie Anwendungen mit hohem Spezialisierungscharakter. Die Anwendungen reichen dabei von einfachen Pilotprojekten im Ladungsträgermanagement, bis hin zu komplexen Anwendungen im Bereich der Produktionssteuerung und der unternehmensübergreifenden Koordination von Materialflüssen. Insgesamt verteilen sich die analysierten Anwendungen auf drei Schwerpunktbereiche. Abbildung 4 stellt die Anwendungsbereiche in einer Übersicht zusammen. Abbildung 4: Übersicht der Anwendungsgebiete aus den Praxisanwendungen Anwendungen aus den Bereichen der Produktionssteuerung und des Materialflusses sind dabei am häufigsten vertreten. Während die Anwendungen aus dem Bereich der Instandhaltung, bzw. dem Qualitätsmanagement, meist mit der Hauptanwendung aus dem Bereich der Produktionssteuerung verknüpft sind. So wird bspw. die Dokumentationen der einzelnen Fertigungsstationen i.d.R. sowohl zur Fertigungssteuerung als auch zur Qualitätssicherung genutzt. 2.3. Ergebnisse der Praxisanalyse Die Analyse der Praxisanwendungen brachte in einem ersten Schritt eine Fülle an spezifischen Merkmalen zusammen. Jeder analysierte Prozess wies seine eigenen Merkmale auf, die aber dem Grundsatz nach systematisiert werden konnten. Die so erarbeiteten Merkmale wurden in einem zweiten Schritt gruppiert. Insgesamt ergaben sich fünf Gruppen, die jeweils nach einer, durch die RFID-Technik durchgeführte Funktion benannt sind. Um eine Prozessanalyse mit Hilfe der Kriterien zu erleichtern, ist jede Gruppe ihrem übergeordneten Flusssystem zugeordnet worden. Nachstehende Abbildung 5 zeigt die einzelnen Gruppierungen mit ihrem jeweiligen Flussbezug. Dabei sind jeder Gruppe beispielhafte Merkmale zugeordnet. Abbildung 5: Organisatorische Kriterien zur Identifikation von RFID-Einsatzpotenzialen Die vorliegende Systematisierung von Identifikationskriterien deckt sowohl Aspekte des reinen Materialflusses, als auch die Aspekte der zugehörigen Informationsflüsse ab. Dabei verhält sich der Flussbezug in jeder Kriteriengruppe unterschiedlich. Die Kriterien der Gruppe Identifikation befassen sich ausschließlich mit dem Identifikationsvorgang. Dabei können die erarbeiteten Kriterien in zwei Arten unterschieden werden, quantitative und qualitative Kriterien. Qualitativ messbar sind Kriterien, die sich auf die Anzahl der Identifikationsvorgänge beziehen. Bspw. die Anzahl der Identifikationsvorgänge im betrachteten Prozessverlauf, bezogen auf ein Identifikationsobjekt oder die Anzahl der Identifikationsvorgänge pro Zeiteinheit an einem Identifikationspunkt innerhalb des Prozessverlaufs. Gleichzeitig umfasst diese Gruppe aber auch Kriterien, die nur qualitativ zu bewerten sind. Kriterien wie die Bedeutung einer exakten Identifikation einzelner Teile im Prozess oder auch der aktuelle Aufwand der Identifikation im Prozess lassen sich nur bedingt oder nicht quantifizieren. Diese Kriteriengruppe fokussiert mit ihren Merkmalen vor allem den Materialfluss. Die einzelnen Merkmale beziehen sich auf den tatsächlichen Identifikationsvorgang und nicht auf die zugehörigen Informationsflüsse. Unter dem Begriff Transparenz sind Kriterien gruppiert, die sich mit der Verfolgbarkeit und Übersichtlichkeit von Prozessen befassen. Dabei gilt es sowohl die Bedeutung für den aktuellen Prozess als auch für die abhängigen Prozesse zu ermitteln. Transparenz bzw. die fehlende Transparenz ist der Kern dieser Kriteriengruppe. Qualitative Kriterien sind in dieser Kategorie besonders stark vertreten, da vor allem die Bedeutung bestimmter Aspekte der Prozesstransparenz als Kriterium dient. Prozesstransparenz liegt i.d.R. nicht vor oder wird nur über komplexe Systeme erreicht. Die Bewertung dieser Kriteriengruppe ist höchst variabel, da Prozesstransparenz in ihrer Bedeutung höchst individuell ist, d.h. von Prozess zu Prozess stark variiert. Die Gruppe Konfiguration fasst Merkmale zusammen, die auf objektspezifische Anpassungsarbeiten im Prozessverlauf hinweisen. Diese Tätigkeiten sind i.d.R. mit einem quantifizierbaren Aufwand verbunden und können so leicht erfasst werden. Die RFID-Technologie eröffnet hier, ähnlich wie im Bereich der Identifikation, Chancen zur Automatisierung bestehender Prozesse. Die Kriterien konzentrieren sich in ihrer Zielrichtung daher schwerpunktmäßig auf die Untersuchung von Potenzialen hinsichtlich der Automation von Konfigurationsvorgängen. Ähnlich wie die vorstehende Gruppe der Transparenz, besitzt diese Gruppe ebenfalls einen starken Bezug zu beiden Flusssystemen. In beiden Gruppen liegt der Fokus der betrachteten Merkmale sowohl auf dem Materialfluss und den physischen Aktionen als auch auf den zugehörigen Informationsflüssen mit entsprechenden Tätigkeiten. Die vierte Gruppe Zuordnung enthält primär Merkmale, die sich auf den Informationsfluss beziehen. Im Vordergrund steht die Art und Weise in der innerhalb eines Prozesses Materialflüsse zwischen Quelle und Senke koordiniert werden. Diese Gruppe enthält ebenfalls sowohl qualitativ als auch quantitativ zu bewertenden Merkmale. RFID-Technik kann hier zu einer deutlichen Komplexitätsreduktion, einer Automation sowie der Reduktion von Stillstands- u. Wartezeiten führen. Die letzte Gruppe Datenverwendung und Dokumentation befasst sich beinahe ausschließlich mit Aspekten des Informationsflusses. Als beinahe Komplementär zur Gruppe der Identifikation stehen hier die informationsflussbezogenen Handlungen, ausgelöst durch einen zugehörigen Materialfluss in der Betrachtung. Dabei stehen vor allem Fehlerraten, manuelle Aufwende der Datenverarbeitung und die Anzahl an Medienbrüchen im Informationsfluss im Vordergrund. Auch hier existiert wiederum ein Geflecht aus qualitativen und quantitativen Kriterien, deren Bewertung individuell durchzuführen ist. 2.4. Technische Kriterien Ergänzt werden die organisatorischen Kriterien um die technischen Kriterien. Diese Kriterien leiten sich aus den technischen Grundlagen der RFID-Technik ab. Diese Grundlagen sind zum einen die Eigenschaft der kontakt- und sichtlosen Übertragung von Energie und Daten, zum anderen der physische Aufbau der Komponenten eines RFID-Systems, dem Reader und dem Transponder. Des Weiteren definieren die frequenzspezifischen Eigenschaften der verschiedenen RFID-Systeme unterschiedliche Leistungsparameter, aus denen technische Kriterien abgeleitet werden können. Daraus ergibt sich die logische Trennung in frequenzabhängige und frequenzunabhängige Kriterien. Auszüge dieser Kriterien zeigt nachstehende Abbildung 6 Abbildung 6: Technische Kriterien Die technischen Kriterien dienen eher zur Technologieauswahl, als zu einer reinen Potenzialidentifikation, da ausschließlich limitierende Aspekte der Technologie betrachtet werden. Einflüsse, bedingt durch die genutzte technische Ausrüstung (bspw. metallische Lagertechnik) oder verfahrensbedingte Einflüsse (elektromagnetische Felder, Schweißroboter, o.ä.), werden über diese Kriterien abgebildet und finden so Berücksichtigung in den zu entwickelnden RFID-Szenarien. Die Wirkung dieser Kriterien hängt stark von dem jeweiligen Stand der Technik ab. Galt bspw. der Einsatz von 13,56 MHz Transpondern direkt auf Metall vor fünf Jahren noch als nicht möglich, so ist die Technik mittlerweile so weit entwickelt, dass auch Lösungen in diesem Bereich angeboten werden. Daher muss festgehalten werden, dass die frequenzabhängigen technischen Kriterien im Zeitverlauf variabel in ihrer Wirkung sind und sich mit dem technischen Fortschritt der RFID-Hardware verändern. Atmosphärische Einflüsse auf die RFID-Hardware sind generell für alle Varianten (unabhängig von der Betriebsfrequenz) der RFID-Technik zu beachten. Der Einfluss der Umgebungsbedingungen auf die Integrität der Hardware ist immer zu berücksichtigen. Temperatur, Druck und Staubbelastung sind hier die Hauptgruppen äußerer Einflüsse auf die RFID-Hardware. Auch diese Gruppe der technischen Kriterien muss mit der sich verändernden technischen Leistungsfähigkeit in ihrer Bewertung angepasst werden. 3. Anwendung der Kriterien 3.1. Anwendungsbeispiel Die Anwendung der Kriterien wird im Folgendem anhand eines kurzen Beispiels erläutert. Nachstehende Abbildung 7 zeigt Ausschnitte aus einem fiktiven Prozess innerhalb eines Großlagers. Abbildung 7: Fiktiver Prozess Von der Entladung des LKW bis zur Einlagerung der Paletten ist der Prozess in vier grobe Phasen strukturiert. Zur Identifikation von RFID-Einsatzpotenzialen werden die einzelnen Prozesselemente nach dem in Tabelle 1dargestellten Schema untersucht. Tabelle 1: Exemplarische Anwendung der Kriterien an einem ausgewählten Beispiel Kriteriengruppe Kriterium Einheit Prozesselement Entladen des LKW Bezugsobjekt LKW Palette Identifikation Anzahl ID - Vorgänge pro Objekt 1/Stck. 2 1 Anzahl ID - Objekte im Zeitraum Stck./ZE 25/h 10/min Transparenz Bedeutung exakter Prozesszeiterfassung Qual. Hoch Hoch intransparente Prozessabschnitte ja/nein Ja Ja Konfiguration Anzahl objektspez. Konfigurationsarbeiten 1/Stck. 0 0 Manueller Anteil der Konfiguration Qual. - - Zuordnung Fehleranteil der Zuordnung Q/S Qual. Mittel Gering Komplexität der Zuordnung Q/S Qual. Hoch Hoch Datenverwendung und Dokumentation Anzahl der Änderungen objektspezifischer Daten im Prozess 1/Stck. 8 (6-7) 2 Anzahl der Medienbrüche im Prozess 1/Stck. - - Die Tabelle zeigt, wie einzelne Prozesselemente mit Hilfe der Identifikationskriterien analysiert werden können. Dabei ergeben sich aus den Ausprägungen der einzelnen Kriterien die Nutzenpotenziale auf deren Basis sich eine spätere RFID-Anwendung gestalten und bewerten lässt. Für die Analyse der einzelnen Prozesselemente ist es notwendig, die Kriterien auf ein Bezugsobjekt zu beziehen. Dieses Bezugsobjekt stellt den potenziellen Träger des Transponders dar. Dabei ist zu beachten, dass innerhalb eines Prozesses mehrere Bezugsobjekte vorhanden sein können. Die Analyse muss daher für jedes Bezugsobjekt einzeln durchgeführt werden. Die Zusammenfassung der Analyseergebnisse pro Bezugsobjekt, über die zusammengehörigen Prozesselemente zeigt die Nutzenpotenziale innerhalb der einzelnen Prozesse. 3.2. Verwendung der Ergebnisse und Bewertungsmöglichkeiten identifizierter Einsatzpotenziale Im vorstehenden Absatz wurde gezeigt, wie die erarbeiteten Kriterien zur Prozessanalyse genutzt werden können. Aus der Analyse ergeben sich Nutzenpotenziale für den RFID-Einsatz. Inwieweit diese erkannten Potenziale tatsächlich zu einer wirtschaftlichen RFID-Anwendung führen, muss in einem zweiten Schritt geprüft werden. Dabei muss festgestellt werden, dass es keine RFID-Lösung „von der Stange“ gibt [Lammers2006]. Jede Anwendung muss individuell auf Wirtschaftlichkeit geprüft werden. Dabei spielen vor allem die Kriterien eine starke Rolle, die nur qualitativ erfasst werden können, z. B. die Bedeutung einer exakten Erfassung der Prozesszeit. Quantitativ erfassbare Kriterien sind vergleichsweise einfach in der wirtschaftlichen Beurteilung, obwohl auch für diese Art Kriterium keine allgemein gültigen Richtwerte zur Beurteilung existieren. Zu groß sind hier die Unterschiede zwischen einzelnen Prozessen und den möglichen Einspareffekten, bedingt durch differierende Kostentreiber und Anforderungen an Leistungsfähigkeiten. Weiterhin müssen sowohl qualitative als auch quantitative Kriterien immer im Zusammenhang gesehen werden. Nur dann kann der potenzielle Nutzen einer RFID-Anwendung vollständig ermittelt werden. Erst aus der Kombination dieser beiden Faktorgruppen ergibt sich das maximale Nutzenpotenzial einer RFID-Anwendung. Vor diesem Hintergrund sind die einzelnen Nutzenpotenziale zu erfassen, daraus mögliche RFID-Szenarien zu entwickeln und diese Szenarien einer abschließenden, detaillierten Wirtschaftlichkeitsanalyse zu unterziehen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bei der Kommissionierung im Warendistributionszentrum müssen die heterogenen Produkte mit den unterschiedlichsten Eigenschaften stabil gestapelt und dürfen während des Transportes nicht beschädigt werden. Für eine automatische Kommissionieranlage wurde das neue Optimierungsprogramm UNIT_OrderPacking für die Planung und Optimierung der Ladeeinheiten eingesetzt. Nach der Problemstellung werden die Einflussfaktoren analysiert und definiert. Die Strategien zur Berücksichtigung solcher Faktoren im Optimierungsverfahren werden vorgestellt. Das gesamte Optimierungsverfahren wird anschließend in Teilproblemen dargestellt. Für jedes Teilproblem werden die Lösungsstrategien nach der Problemanalyse durch Verallgemeinerung der Lösungsvorgehensweise abgeleitet und zusammengefasst. Folgende Teilprobleme werden relativ ausführlich behandelt: * die Bewertung und Selektion eines Packobjektes für jeden Packschritt hinsichtlich der Tragfähigkeit, des Gewichtes und der Warengruppe, * die Kraftübertragung der Packobjekte von oben nach unten und die „Relationship Matrix“ der Packobjekte sowie * die Strategien und Prioritäten für das Anordnen und Stapeln der Packobjekte im Packraum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Steuerung logistischer und produktionstechnischer Systeme ist heute durchgängig hierarchisch organisiert. Auch dezentrale und wandelbare Systeme mit eingebetteten fraktalen oder adaptiven Elementen oder Regelkreisen lassen sich in ihrer Gesamtheit stets auf eine zeitgenaue zentrale Planung zurückführen. „Realtime Logistics“ bezeichnet im Gegensatz hierzu die echtzeitnahe Materialflusssteuerung auf Basis einer autonomen, selbstgesteuerten Abwicklung der im einzelnen logistischen Objekt implementierten Mission. Hierzu werden mobile Softwareagenten eingesetzt, die zunächst synchron zum Objekt, und in Zukunft eingebettet im logistischen Objekt, laufen werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Der Druck auf Kosteneinsparungen und Produktivitätszuwachs in Bereichen der Kommissionierung und somit auch der Wunsch nach Rationalisierung durch Automatisierung wachsen stetig. Besonders bei in Beuteln verpackten Artikeln gestaltet sich jedoch eine Automatisierung der Kommissioniervorgänge aufgrund der mechanischen Produkteigenschaften schwierig. Entsprechende Systeme sind erst noch zu entwickeln. Im Systementwicklungsprozess möchte man möglichst frühzeitig Entscheidungen treffen können, um die technisch-wirtschaftlich sinnvollste Lösungsvariante auszuwählen und Entwicklungsaufwand einzusparen. Dieser Artikel beschäftigt sich mit den Eigenschaften besagter Produkte im Hinblick auf deren automatisierte Handhabung und zeigt einen konstruktionsmethodischen Ansatz zur Bewertung systemtechnischer Lösungsansätze mit zugehörigerer Sensitivitätsanalyse auf.