1 resultado para androgen-responsive
em Digital Peer Publishing
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (6)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Aston University Research Archive (21)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (55)
- Boston University Digital Common (2)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Cambridge University Engineering Department Publications Database (2)
- CentAUR: Central Archive University of Reading - UK (33)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (30)
- Cochin University of Science & Technology (CUSAT), India (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Cornell: DigitalCommons@ILR (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (8)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (15)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Helda - Digital Repository of University of Helsinki (36)
- Indian Institute of Science - Bangalore - Índia (43)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Gulbenkian de Ciência (2)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (54)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (65)
- Queensland University of Technology - ePrints Archive (381)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (40)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad Politécnica de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (7)
- University of Michigan (4)
- University of Queensland eSpace - Australia (17)
- University of Washington (3)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Imitation learning is a promising approach for generating life-like behaviors of virtual humans and humanoid robots. So far, however, imitation learning has been mostly restricted to single agent settings where observed motions are adapted to new environment conditions but not to the dynamic behavior of interaction partners. In this paper, we introduce a new imitation learning approach that is based on the simultaneous motion capture of two human interaction partners. From the observed interactions, low-dimensional motion models are extracted and a mapping between these motion models is learned. This interaction model allows the real-time generation of agent behaviors that are responsive to the body movements of an interaction partner. The interaction model can be applied both to the animation of virtual characters as well as to the behavior generation for humanoid robots.