2 resultados para Wason Selection Task
em Digital Peer Publishing
Resumo:
Immersive virtual environments (IVEs) have the potential to afford natural interaction in the three-dimensional (3D) space around a user. However, interaction performance in 3D mid-air is often reduced and depends on a variety of ergonomics factors, the user's endurance, muscular strength, as well as fitness. In particular, in contrast to traditional desktop-based setups, users often cannot rest their arms in a comfortable pose during the interaction. In this article we analyze the impact of comfort on 3D selection tasks in an immersive desktop setup. First, in a pre-study we identified how comfortable or uncomfortable specific interaction positions and poses are for users who are standing upright. Then, we investigated differences in 3D selection task performance when users interact with their hands in a comfortable or uncomfortable body pose, while sitting on a chair in front of a table while the VE was displayed on a headmounted display (HMD). We conducted a Fitts' Law experiment to evaluate selection performance in different poses. The results suggest that users achieve a significantly higher performance in a comfortable pose when they rest their elbow on the table.
Resumo:
Tracking user’s visual attention is a fundamental aspect in novel human-computer interaction paradigms found in Virtual Reality. For example, multimodal interfaces or dialogue-based communications with virtual and real agents greatly benefit from the analysis of the user’s visual attention as a vital source for deictic references or turn-taking signals. Current approaches to determine visual attention rely primarily on monocular eye trackers. Hence they are restricted to the interpretation of two-dimensional fixations relative to a defined area of projection. The study presented in this article compares precision, accuracy and application performance of two binocular eye tracking devices. Two algorithms are compared which derive depth information as required for visual attention-based 3D interfaces. This information is further applied to an improved VR selection task in which a binocular eye tracker and an adaptive neural network algorithm is used during the disambiguation of partly occluded objects.