1 resultado para Vector autoregression
em Digital Peer Publishing
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (67)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (22)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (45)
- Boston University Digital Common (2)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (45)
- CentAUR: Central Archive University of Reading - UK (37)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (29)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (2)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (18)
- Indian Institute of Science - Bangalore - Índia (124)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (14)
- Memoria Académica - FaHCE, UNLP - Argentina (2)
- Ministerio de Cultura, Spain (5)
- National Center for Biotechnology Information - NCBI (13)
- Publishing Network for Geoscientific & Environmental Data (117)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (67)
- Queensland University of Technology - ePrints Archive (59)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (13)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (128)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (7)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (13)
- Universidad Politécnica de Madrid (8)
- Universidade Técnica de Lisboa (1)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (8)
- University of Connecticut - USA (1)
- University of Southampton, United Kingdom (7)
Resumo:
Complementary to automatic extraction processes, Virtual Reality technologies provide an adequate framework to integrate human perception in the exploration of large data sets. In such multisensory system, thanks to intuitive interactions, a user can take advantage of all his perceptual abilities in the exploration task. In this context the haptic perception, coupled to visual rendering, has been investigated for the last two decades, with significant achievements. In this paper, we present a survey related to exploitation of the haptic feedback in exploration of large data sets. For each haptic technique introduced, we describe its principles and its effectiveness.