3 resultados para Ubiquitous computing
em Digital Peer Publishing
Resumo:
In den letzten Jahren wurde die Vision einer Welt smarter Alltagsgegenstände unter den Begriffen wie Ubiquitous Computing, Pervasive Computing und Ambient Intelligence in der Öffentlichkeit wahrgenommen. Die smarten Gegenstände sollen mit digitaler Logik, Sensorik und der Möglichkeit zur Vernetzung ausgestattet werden. Somit bilden sie ein „Internet der Dinge“, in dem der Computer als eigenständiges Gerät verschwindet und in den Objekten der physischen Welt aufgeht. Während auf der einen Seite die Vision des „Internet der Dinge“ durch die weiter anhaltenden Fortschritte in der Informatik, Mikroelektronik, Kommunikationstechnik und Materialwissenschaft zumindest aus technischer Sicht wahrscheinlich mittelfristig realisiert werden kann, müssen auf der anderen Seite die damit zusammenhängenden ökonomischen, rechtlichen und sozialen Fragen geklärt werden. Zur Weiterentwicklung und Realisierung der Vision des „Internet der Dinge“ wurde erstmals vom AutoID-Center das EPC-Konzept entwickelt, welches auf globale netzbasierte Informationsstandards setzt und heute von EPCglobal weiterentwickelt und umgesetzt wird. Der EPC erlaubt es, umfassende Produktinformationen über das Internet zur Verfügung zu stellen. Die RFID-Technologie stellt dabei die wichtigste Grundlage des „Internet der Dinge“ dar, da sie die Brücke zwischen der physischen Welt der Produkte und der virtuellen Welt der digitalen Daten schlägt. Die Objekte, die mit RFID-Transpondern ausgestattet sind, können miteinander kommunizieren und beispielsweise ihren Weg durch die Prozesskette finden. So können sie dann mit Hilfe der auf den RFID-Transpondern gespeicherten Informationen Förderanlagen oder sonstige Maschinen ohne menschliches Eingreifen selbstständig steuern.
Resumo:
Augmented dice allow players of tabletop games to have the result of a roll be automatically recorded by a computer, e.g., for supporting strategy games. We have built a set of three augmented-dice-prototypes based on radio frequency identification (RFID) technology, which allows us to build robust, cheap, and small augmented dice. Using a corresponding readout infrastructure and a sample application, we have evaluated our approach and show its advantages over other dice augmentation methods discussed in the literature.
Resumo:
Mobile learning, in the past defined as learning with mobile devices, now refers to any type of learning-on-the-go or learning that takes advantage of mobile technologies. This new definition shifted its focus from the mobility of technology to the mobility of the learner (O'Malley and Stanton 2002; Sharples, Arnedillo-Sanchez et al. 2009). Placing emphasis on the mobile learner’s perspective requires studying “how the mobility of learners augmented by personal and public technology can contribute to the process of gaining new knowledge, skills, and experience” (Sharples, Arnedillo-Sanchez et al. 2009). The demands of an increasingly knowledge based society and the advances in mobile phone technology are combining to spur the growth of mobile learning. Around the world, mobile learning is predicted to be the future of online learning, and is slowly entering the mainstream education. However, for mobile learning to attain its full potential, it is essential to develop more advanced technologies that are tailored to the needs of this new learning environment. A research field that allows putting the development of such technologies onto a solid basis is user experience design, which addresses how to improve usability and therefore user acceptance of a system. Although there is no consensus definition of user experience, simply stated it focuses on how a person feels about using a product, system or service. It is generally agreed that user experience adds subjective attributes and social aspects to a space that has previously concerned itself mainly with ease-of-use. In addition, it can include users’ perceptions of usability and system efficiency. Recent advances in mobile and ubiquitous computing technologies further underline the importance of human-computer interaction and user experience (feelings, motivations, and values) with a system. Today, there are plenty of reports on the limitations of mobile technologies for learning (e.g., small screen size, slow connection), but there is a lack of research on user experience with mobile technologies. This dissertation will fill in this gap by a new approach in building a user experience-based mobile learning environment. The optimized user experience we suggest integrates three priorities, namely a) content, by improving the quality of delivered learning materials, b) the teaching and learning process, by enabling live and synchronous learning, and c) the learners themselves, by enabling a timely detection of their emotional state during mobile learning. In detail, the contributions of this thesis are as follows: • A video codec optimized for screencast videos which achieves an unprecedented compression rate while maintaining a very high video quality, and a novel UI layout for video lectures, which together enable truly mobile access to live lectures. • A new approach in HTTP-based multimedia delivery that exploits the characteristics of live lectures in a mobile context and enables a significantly improved user experience for mobile live lectures. • A non-invasive affective learning model based on multi-modal emotion detection with very high recognition rates, which enables real-time emotion detection and subsequent adaption of the learning environment on mobile devices. The technology resulting from the research presented in this thesis is in daily use at the School of Continuing Education of Shanghai Jiaotong University (SOCE), a blended-learning institution with 35.000 students.