3 resultados para Time inventory models
em Digital Peer Publishing
Resumo:
In this paper we first show that the gains achievable by integrating pricing and inventory control are usually small for classical demand functions. We then introduce reference price models and demonstrate that for this class of demand functions the benefits of integration with inventory control are substantially increased due to the price dynamics. We also provide some analytical results for this more complex model. We thus conclude that integrated pricing/inventory models could repeat the success of revenue management in practice if reference price effects are included in the demand model and the properties of this new model are better understood.
Resumo:
This paper treats the problem of setting the inventory level and optimizing the buffer allocation of closed-loop flow lines operating under the constant-work-in-process (CONWIP) protocol. We solve a very large but simple linear program that models an entire simulation run of a closed-loop flow line in discrete time to determine a production rate estimate of the system. This approach introduced in Helber, Schimmelpfeng, Stolletz, and Lagershausen (2011) for open flow lines with limited buffer capacities is extended to closed-loop CONWIP flow lines. Via this method, both the CONWIP level and the buffer allocation can be optimized simultaneously. The first part of a numerical study deals with the accuracy of the method. In the second part, we focus on the relationship between the CONWIP inventory level and the short-term profit. The accuracy of the method turns out to be best for such configurations that maximize production rate and/or short-term profit.
Resumo:
In recent years, depth cameras have been widely utilized in camera tracking for augmented and mixed reality. Many of the studies focus on the methods that generate the reference model simultaneously with the tracking and allow operation in unprepared environments. However, methods that rely on predefined CAD models have their advantages. In such methods, the measurement errors are not accumulated to the model, they are tolerant to inaccurate initialization, and the tracking is always performed directly in reference model's coordinate system. In this paper, we present a method for tracking a depth camera with existing CAD models and the Iterative Closest Point (ICP) algorithm. In our approach, we render the CAD model using the latest pose estimate and construct a point cloud from the corresponding depth map. We construct another point cloud from currently captured depth frame, and find the incremental change in the camera pose by aligning the point clouds. We utilize a GPGPU-based implementation of the ICP which efficiently uses all the depth data in the process. The method runs in real-time, it is robust for outliers, and it does not require any preprocessing of the CAD models. We evaluated the approach using the Kinect depth sensor, and compared the results to a 2D edge-based method, to a depth-based SLAM method, and to the ground truth. The results show that the approach is more stable compared to the edge-based method and it suffers less from drift compared to the depth-based SLAM.